Stepwise transformation of a cholera toxin and a p24 (HIV-1) epitope into D-peptide analogs
We have transformed two peptide epitopes into D-peptide analogs: VPGSQHIDS derived from cholera toxin recognized by the antibody TE33, and GATPQDLNTML from the HIV-1 capsid protein p24 recognized by the antibody CB4-1. The transformation process was performed by stepwise substitution of each single...
Gespeichert in:
Veröffentlicht in: | Protein engineering 1998-10, Vol.11 (10), p.941-948 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have transformed two peptide epitopes into D-peptide analogs: VPGSQHIDS derived from cholera toxin recognized by the antibody TE33, and GATPQDLNTML from the HIV-1 capsid protein p24 recognized by the antibody CB4-1. The transformation process was performed by stepwise substitution of each single epitope position by all 19 D-amino acids and glycine followed by antibody binding studies and selection of one D-analog for further transformation. Thus, each transformation step introduced one novel D-position into the peptide. For both epitopes complete D-analogs were obtained. The cholera toxin-derived variant dwGsqhydp binds to the antibody TE33 with higher affinity than its original epitope, whereas in the case of the p24-derived analog saGdwwGkssl lower affinity was detected. Both D-peptides are completely stable in serum for several days. Antibody interaction models for both D-molecules were generated by computer-assisted modelling based on the crystal structures of the starting complexes. Compared with the L-peptides, the binding conformation of dwGsqhydp is very similar, whereas saGdwwGkssl displays a completely different interaction mode. |
---|---|
ISSN: | 0269-2139 1741-0126 1741-0134 |
DOI: | 10.1093/protein/11.10.941 |