Development of photostabilized asymmetrical cyanine dyes for in vivo photoacoustic imaging of tumors

Photoacoustic imaging (PAI) contributes to tumor diagnosis through the use of PAI probes that effectively accumulate in tumors. Previously, we developed a symmetrical cyanine dye, IC7-1-Bu, which showed high potential as a PAI probe because of its high tumor targeting ability and sufficient in vivo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2015-09, Vol.20 (9), p.096006-096006
Hauptverfasser: Onoe, Satoru, Temma, Takashi, Kanazaki, Kengo, Ono, Masahiro, Saji, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoacoustic imaging (PAI) contributes to tumor diagnosis through the use of PAI probes that effectively accumulate in tumors. Previously, we developed a symmetrical cyanine dye, IC7-1-Bu, which showed high potential as a PAI probe because of its high tumor targeting ability and sufficient in vivo PA signal. However, IC7-1-Bu lacks photostability for multiple laser irradiations, so we developed stabilized PAI probes using IC7-1-Bu as a lead compound. We focused on the effect of singlet oxygen (O12) generated by excited PAI probes on probe degeneration. We introduced a triplet-state quencher (TSQ) moiety into IC7-1-Bu to quench O12 generation and designed three IC-n-T derivatives with different linker lengths (n indicates linker length). The IC-n-T derivatives emitted in vitro PA signals that were comparable to IC7-1-Bu and significantly reduced O12 generation while showing improved photostability against multiple irradiations. Of the three derivatives evaluated, IC-5-T accumulated in tumors effectively to allow clear PAI of tumors in vivo. Furthermore, the photostability of IC-5-T was 1.5-fold higher than that of IC7-1-Bu in in vivo sequential PAI. These results suggest that IC-5-T is a potential PAI probe for in vivo sequential tumor imaging.
ISSN:1083-3668
1560-2281
DOI:10.1117/1.JBO.20.9.096006