Fast and General Method To Predict the Physicochemical Properties of Druglike Molecules Using the Integral Equation Theory of Molecular Liquids
We report a method to predict physicochemical properties of druglike molecules using a classical statistical mechanics based solvent model combined with machine learning. The RISM-MOL-INF method introduced here provides an accurate technique to characterize solvation and desolvation processes based...
Gespeichert in:
Veröffentlicht in: | Molecular pharmaceutics 2015-09, Vol.12 (9), p.3420-3432 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a method to predict physicochemical properties of druglike molecules using a classical statistical mechanics based solvent model combined with machine learning. The RISM-MOL-INF method introduced here provides an accurate technique to characterize solvation and desolvation processes based on solute–solvent correlation functions computed by the 1D reference interaction site model of the integral equation theory of molecular liquids. These functions can be obtained in a matter of minutes for most small organic and druglike molecules using existing software (RISM-MOL) (Sergiievskyi, V. P.; Hackbusch, W.; Fedorov, M. V. J. Comput. Chem. 2011, 32, 1982–1992). Predictions of caco-2 cell permeability and hydration free energy obtained using the RISM-MOL-INF method are shown to be more accurate than the state-of-the-art tools for benchmark data sets. Due to the importance of solvation and desolvation effects in biological systems, it is anticipated that the RISM-MOL-INF approach will find many applications in biophysical and biomedical property prediction. |
---|---|
ISSN: | 1543-8384 1543-8392 |
DOI: | 10.1021/acs.molpharmaceut.5b00441 |