Gut physiology mediates a trade‐off between adaptation to malnutrition and susceptibility to food‐borne pathogens

The animal gut plays a central role in tackling two common ecological challenges, nutrient shortage and food‐borne parasites, the former by efficient digestion and nutrient absorption, the latter by acting as an immune organ and a barrier. It remains unknown whether these functions can be independen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2015-10, Vol.18 (10), p.1078-1086
Hauptverfasser: Vijendravarma, Roshan K, Narasimha, Sunitha, Chakrabarti, Sveta, Babin, Aurelie, Kolly, Sylvain, Lemaitre, Bruno, Kawecki, Tadeusz J, Turlings, Ted
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The animal gut plays a central role in tackling two common ecological challenges, nutrient shortage and food‐borne parasites, the former by efficient digestion and nutrient absorption, the latter by acting as an immune organ and a barrier. It remains unknown whether these functions can be independently optimised by evolution, or whether they interfere with each other. We report that Drosophila melanogaster populations adapted during 160 generations of experimental evolution to chronic larval malnutrition became more susceptible to intestinal infection with the opportunistic bacterial pathogen Pseudomonas entomophila. However, they do not show suppressed immune response or higher bacterial loads. Rather, their increased susceptibility to P. entomophila is largely mediated by an elevated predisposition to loss of intestinal barrier integrity upon infection. These results may reflect a trade‐off between the efficiency of nutrient extraction from poor food and the protective function of the gut, in particular its tolerance to pathogen‐induced damage.
ISSN:1461-023X
1461-0248
DOI:10.1111/ele.12490