Characterization of Ion Transport and -Sorption in a Carbon Based Porous Electrode for Desalination Purposes
New and more efficient water desalination technologies have been a topic of incipient research over the past few decades. Although the focus has been placed on the improvement of membrane-based desalination methods such as reverse osmosis, the development of new high surface area carbon-based-electr...
Gespeichert in:
Veröffentlicht in: | Journal of fluids engineering 2013-04, Vol.135 (4), p.1-8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New and more efficient water desalination technologies have been a topic of incipient research over the past few decades. Although the focus has been placed on the improvement of membrane-based desalination methods such as reverse osmosis, the development of new high surface area carbon-based-electrode materials have brought substantial interest towards capacitive deionization (CDI), a novel technique that uses an electric field to separate the ionic species from the water. Part of the new interest on CDI is its ability to store and return a fraction of the energy used in the desalination process. This characteristic is not common to other electric-field-based desalination methods such as electro-deionization and electrodialysis reversal where none of the input energy is recoverable. This paper presents work conducted to analyze the energy recovery, thermodynamic efficiency, and ionic adsorption/desorption rates in a CDI cell using different salt concentration solutions and various flow rates. Voltage and electrical current measurements are conducted during the desalination and electrode regeneration processes and used to evaluate the energy recovery ratio. Salinity measurements of the inflow and outflow stream concentrations using conductivity probes, alongside the current measurements, are used to calculate ion adsorption efficiency. Two analytical species transport models are developed to estimate the net ionic adsorption rates in a steady-state and nonsaturated porous electrode scenario. Finally, the convective and electrokinetic transport times are compared and their effect on desalination performance is presented. Steady test results for outlet to inlet concentration ratio show a strong dependence on flow rate and concentration independence for dilute solutions. In addition, transient test results indicate that the net electrical energy requirement is dependent on the number of carbon electrode regeneration cycles, which is thought to be due to imperfect regeneration. The energy requirements and adsorption/desorption rate analyses conducted for this water-desalination process could be extended to other ion-adsorption applications such as the reprocessing of lubricants or spent nuclear fuels in a near future. |
---|---|
ISSN: | 0098-2202 1528-901X |
DOI: | 10.1115/1.4023294 |