Nd-YAG laser irradiation damages to Verrucaria nigrescens

Epilithic and endolithic microorganisms and lichens play an important role in stone biodeterioration. The structural and physiological damage caused by nanosecond pulsed laser of 1064 nm from Nd:YAG laser to Verrucaria nigrescens lichen as well as to endolithic algae and fungi were investigated in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International biodeterioration & biodegradation 2013-10, Vol.84, p.281-290
Hauptverfasser: Speranza, M., Sanz, M., Oujja, M., de los Rios, A., Wierzchos, J., Pérez-Ortega, S., Castillejo, M., Ascaso, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epilithic and endolithic microorganisms and lichens play an important role in stone biodeterioration. The structural and physiological damage caused by nanosecond pulsed laser of 1064 nm from Nd:YAG laser to Verrucaria nigrescens lichen as well as to endolithic algae and fungi were investigated in the present study. Ultrastructural laser effects on lichen and endolithic microorganisms were study without disturbing the relationship between lichen and lithic substrate by taking lichen-containing rock fragments and processing both together. SEM-BSE, LT-SEM and FM were used to determine cell integrity and ultrastructure, which reflect microorganism viability. Photobiont vitality was determined using a PAM chlorophyll fluorescence technique. The lichen thalli were completely removed by irradiation with 5 ns pulses at a fluence of 2.0 J/cm2 with no stone damage as showed by micro-Raman spectroscopy. The fungal and algal endolithic cells located below were completely destroyed or presented a high plasmolysis degree resulting from heating their microenvironment. The lichen and endolithic mycobiont near the irradiated zone were also damaged. Algal photosynthetic damage prevents fungal survival and lichen viability. This is the first report of laser removal and inactivation of lichen and lithic microorganisms, and thus provide an environmentally friendly and efficient method to control stone biodeterioration. ► We study laser control of endolithic algae, fungi and epilithic lichen. ► The laser damage on cell integrity, ultrastructure and vitality was determined. ► The laser was effective to completely remove lichen thalli from stone surface. ► The endolithic microorganisms were also damaged by the laser heating. ► An environmentally friendly and efficient method to control stone biodeterioration.
ISSN:0964-8305
1879-0208
DOI:10.1016/j.ibiod.2012.02.010