A three-dimensional computational study of the effect of the inlet conditions on supersonic mixing and combustion

In recent years, a significant amount of high-speed combustion research has been directed toward optimization of scramjet combustors, and in particular on the efficiency of fuel–air mixing and reaction taking place in the engine. This article numerically investigates the flow characteristics of a du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2013-03, Vol.227 (3), p.425-435
Hauptverfasser: Abdel-Salam, Tarek M, Micklow, Gerald J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, a significant amount of high-speed combustion research has been directed toward optimization of scramjet combustors, and in particular on the efficiency of fuel–air mixing and reaction taking place in the engine. This article numerically investigates the flow characteristics of a dual-mode scramjet–combustor configuration. Results are presented for a three-dimensional combustor model with a single wall-mounted raised (compression) ramp as a fuel injector. Hydrogen is used as the fuel and is injected through the raised ramp (which has an aspect ratio of 0.5) parallel to the air stream. Vitiated air with different concentrations of H2O and CO2 are used at the inlet boundary. Three equivalence ratios were simulated, 0.25, 0.31, and 0.41. Numerical results are obtained using a finite volume computational fluid dynamics code. Initially, three forms of the two-equation k–ε turbulent model were tested: the standard, the RNG, and the realizable with unstructured grids. Final results were obtained with the RNG form of the k–ε turbulent model. Results show that the combustion efficiency decreases with the increase of the equivalence ratio. Also, the cases with CO2 show slightly higher combustion efficiencies.
ISSN:0954-4100
2041-3025
DOI:10.1177/0954410012438023