Topological antiferromagnetic phase in a correlated Bernevig-Hughes-Zhang model

Topological properties of antiferromagnetic phases are studied for a correlated topological band insulator by applying the dynamical mean-field theory to an extended Bernevig-Hughes-Zhang model including the Hubbard interaction. The calculation of the magnetic moment and the spin Chern number confir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-02, Vol.87 (8), Article 085134
Hauptverfasser: Yoshida, Tsuneya, Peters, Robert, Fujimoto, Satoshi, Kawakami, Norio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topological properties of antiferromagnetic phases are studied for a correlated topological band insulator by applying the dynamical mean-field theory to an extended Bernevig-Hughes-Zhang model including the Hubbard interaction. The calculation of the magnetic moment and the spin Chern number confirms the existence of a nontrivial antiferromagnetic (AF) phase beyond the Hartree-Fock theory. In particular, we uncover the intriguing fact that the topologically nontrivial AF phase is essentially stabilized by correlation effects but not by the Hartree shifts alone. This counterintuitive effect is demonstrated, through a comparison with the Hartree-Fock results, and should apply for generic topological insulators with strong correlations.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.87.085134