Proton transfer in surface-stabilized chiral motifs of croconic acid

The structure and cooperative proton ordering of two-dimensional sheets of croconic acid were studied with scanning tunneling microscopy and first-principles calculations. Unlike in the crystalline form, which exhibits a pleated, densely packed polar sheet structure, the confinement of the molecules...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-01, Vol.87 (4), Article 041402
Hauptverfasser: Kunkel, Donna A., Hooper, James, Simpson, Scott, Rojas, Geoffrey A., Ducharme, Stephen, Usher, Timothy, Zurek, Eva, Enders, Axel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure and cooperative proton ordering of two-dimensional sheets of croconic acid were studied with scanning tunneling microscopy and first-principles calculations. Unlike in the crystalline form, which exhibits a pleated, densely packed polar sheet structure, the confinement of the molecules to the surface results in hydrogen-bonded chiral clusters and networks. First-principles calculations suggest that the surface stabilizes networks of configurational isomers, which arise from direct hydrogen transfer between their constituent croconic acid monomers. Some of these configurations have a net polarization. It is demonstrated through constrained molecular dynamics simulations that simultaneous proton transfer between any two molecules can occur spontaneously. This finding is a prerequisite for the occurrence of in-plane ferroelectricity based on proton transfer in 2D sheets.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.87.041402