Ultrashort shock waves in nickel induced by femtosecond laser pulses

The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-02, Vol.87 (5), Article 054109
Hauptverfasser: Demaske, Brian J., Zhakhovsky, Vasily V., Inogamov, Nail A., Oleynik, Ivan I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 87
creator Demaske, Brian J.
Zhakhovsky, Vasily V.
Inogamov, Nail A.
Oleynik, Ivan I.
description The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low-intensity laser pulses, the highly pressurized subsurface layer breaks into a single elastic shock wave having a combined loading and unloading time [approximate]10-20 ps. Owing to the time-dependent nature of elastic-plastic transformations, an elastic response is maintained for shock amplitudes exceeding the Hugoniot elastic limit determined from simulations of steady shock waves. However, for high-intensity laser pulses (absorbed laser fluence >0.6 J/cm super(2)), both elastic and plastic shock waves are formed independently from the initial high-pressure state. Acoustic pulses emitted by the plastic front support the motion of the elastic precursor resulting in a fluence-independent elastic amplitude; whereas the unsupported plastic front undergoes significant attenuation during propagation and may fully decay within the metal film.
doi_str_mv 10.1103/PhysRevB.87.054109
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709779809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709779809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-9485be6c8c8e94970b6d1bc993212b24d7ce765bfa8bf62abd7d2acef31d127e3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURC0EEqXwA6y8ZJNy7TxsL6E8pUogRCV2lh83amiaFDspyt8TFNjMnMVoFoeQSwYLxiC9ft0M8Q0PtwspFpBnDNQRmbE8h4Sn-cfxyKBkAoyzU3IW4ycAy1TGZ-RuXXfBxE0bOjqm29Jvc8BIq4Y2ldtiPZLvHXpqB1rirmsjurbxtDYRA933dcR4Tk5KM8LFX8_J-uH-ffmUrF4en5c3q8RxCV2iMplbLJx0ElWmBNjCM-uUSjnjlmdeOBRFbksjbVlwY73w3DgsU-YZF5jOydX0uw_tV4-x07sqOqxr02DbR80EKCGUBDVO-TR1oY0xYKn3odqZMGgG-leZ_lempdCTsvQH7GpiOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709779809</pqid></control><display><type>article</type><title>Ultrashort shock waves in nickel induced by femtosecond laser pulses</title><source>American Physical Society Journals</source><creator>Demaske, Brian J. ; Zhakhovsky, Vasily V. ; Inogamov, Nail A. ; Oleynik, Ivan I.</creator><creatorcontrib>Demaske, Brian J. ; Zhakhovsky, Vasily V. ; Inogamov, Nail A. ; Oleynik, Ivan I.</creatorcontrib><description>The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low-intensity laser pulses, the highly pressurized subsurface layer breaks into a single elastic shock wave having a combined loading and unloading time [approximate]10-20 ps. Owing to the time-dependent nature of elastic-plastic transformations, an elastic response is maintained for shock amplitudes exceeding the Hugoniot elastic limit determined from simulations of steady shock waves. However, for high-intensity laser pulses (absorbed laser fluence &gt;0.6 J/cm super(2)), both elastic and plastic shock waves are formed independently from the initial high-pressure state. Acoustic pulses emitted by the plastic front support the motion of the elastic precursor resulting in a fluence-independent elastic amplitude; whereas the unsupported plastic front undergoes significant attenuation during propagation and may fully decay within the metal film.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.87.054109</identifier><language>eng</language><subject>Amplitudes ; Condensed matter ; Elastic limit ; Femtosecond ; Lasers ; Nickel ; Shock waves ; Simulation</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-02, Vol.87 (5), Article 054109</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-9485be6c8c8e94970b6d1bc993212b24d7ce765bfa8bf62abd7d2acef31d127e3</citedby><cites>FETCH-LOGICAL-c280t-9485be6c8c8e94970b6d1bc993212b24d7ce765bfa8bf62abd7d2acef31d127e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Demaske, Brian J.</creatorcontrib><creatorcontrib>Zhakhovsky, Vasily V.</creatorcontrib><creatorcontrib>Inogamov, Nail A.</creatorcontrib><creatorcontrib>Oleynik, Ivan I.</creatorcontrib><title>Ultrashort shock waves in nickel induced by femtosecond laser pulses</title><title>Physical review. B, Condensed matter and materials physics</title><description>The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low-intensity laser pulses, the highly pressurized subsurface layer breaks into a single elastic shock wave having a combined loading and unloading time [approximate]10-20 ps. Owing to the time-dependent nature of elastic-plastic transformations, an elastic response is maintained for shock amplitudes exceeding the Hugoniot elastic limit determined from simulations of steady shock waves. However, for high-intensity laser pulses (absorbed laser fluence &gt;0.6 J/cm super(2)), both elastic and plastic shock waves are formed independently from the initial high-pressure state. Acoustic pulses emitted by the plastic front support the motion of the elastic precursor resulting in a fluence-independent elastic amplitude; whereas the unsupported plastic front undergoes significant attenuation during propagation and may fully decay within the metal film.</description><subject>Amplitudes</subject><subject>Condensed matter</subject><subject>Elastic limit</subject><subject>Femtosecond</subject><subject>Lasers</subject><subject>Nickel</subject><subject>Shock waves</subject><subject>Simulation</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kMtOwzAURC0EEqXwA6y8ZJNy7TxsL6E8pUogRCV2lh83amiaFDspyt8TFNjMnMVoFoeQSwYLxiC9ft0M8Q0PtwspFpBnDNQRmbE8h4Sn-cfxyKBkAoyzU3IW4ycAy1TGZ-RuXXfBxE0bOjqm29Jvc8BIq4Y2ldtiPZLvHXpqB1rirmsjurbxtDYRA933dcR4Tk5KM8LFX8_J-uH-ffmUrF4en5c3q8RxCV2iMplbLJx0ElWmBNjCM-uUSjnjlmdeOBRFbksjbVlwY73w3DgsU-YZF5jOydX0uw_tV4-x07sqOqxr02DbR80EKCGUBDVO-TR1oY0xYKn3odqZMGgG-leZ_lempdCTsvQH7GpiOQ</recordid><startdate>20130221</startdate><enddate>20130221</enddate><creator>Demaske, Brian J.</creator><creator>Zhakhovsky, Vasily V.</creator><creator>Inogamov, Nail A.</creator><creator>Oleynik, Ivan I.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130221</creationdate><title>Ultrashort shock waves in nickel induced by femtosecond laser pulses</title><author>Demaske, Brian J. ; Zhakhovsky, Vasily V. ; Inogamov, Nail A. ; Oleynik, Ivan I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-9485be6c8c8e94970b6d1bc993212b24d7ce765bfa8bf62abd7d2acef31d127e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amplitudes</topic><topic>Condensed matter</topic><topic>Elastic limit</topic><topic>Femtosecond</topic><topic>Lasers</topic><topic>Nickel</topic><topic>Shock waves</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demaske, Brian J.</creatorcontrib><creatorcontrib>Zhakhovsky, Vasily V.</creatorcontrib><creatorcontrib>Inogamov, Nail A.</creatorcontrib><creatorcontrib>Oleynik, Ivan I.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demaske, Brian J.</au><au>Zhakhovsky, Vasily V.</au><au>Inogamov, Nail A.</au><au>Oleynik, Ivan I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrashort shock waves in nickel induced by femtosecond laser pulses</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-02-21</date><risdate>2013</risdate><volume>87</volume><issue>5</issue><artnum>054109</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low-intensity laser pulses, the highly pressurized subsurface layer breaks into a single elastic shock wave having a combined loading and unloading time [approximate]10-20 ps. Owing to the time-dependent nature of elastic-plastic transformations, an elastic response is maintained for shock amplitudes exceeding the Hugoniot elastic limit determined from simulations of steady shock waves. However, for high-intensity laser pulses (absorbed laser fluence &gt;0.6 J/cm super(2)), both elastic and plastic shock waves are formed independently from the initial high-pressure state. Acoustic pulses emitted by the plastic front support the motion of the elastic precursor resulting in a fluence-independent elastic amplitude; whereas the unsupported plastic front undergoes significant attenuation during propagation and may fully decay within the metal film.</abstract><doi>10.1103/PhysRevB.87.054109</doi></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2013-02, Vol.87 (5), Article 054109
issn 1098-0121
1550-235X
language eng
recordid cdi_proquest_miscellaneous_1709779809
source American Physical Society Journals
subjects Amplitudes
Condensed matter
Elastic limit
Femtosecond
Lasers
Nickel
Shock waves
Simulation
title Ultrashort shock waves in nickel induced by femtosecond laser pulses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrashort%20shock%20waves%20in%20nickel%20induced%20by%20femtosecond%20laser%20pulses&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Demaske,%20Brian%20J.&rft.date=2013-02-21&rft.volume=87&rft.issue=5&rft.artnum=054109&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.87.054109&rft_dat=%3Cproquest_cross%3E1709779809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709779809&rft_id=info:pmid/&rfr_iscdi=true