Ultrashort shock waves in nickel induced by femtosecond laser pulses
The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-02, Vol.87 (5), Article 054109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 87 |
creator | Demaske, Brian J. Zhakhovsky, Vasily V. Inogamov, Nail A. Oleynik, Ivan I. |
description | The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low-intensity laser pulses, the highly pressurized subsurface layer breaks into a single elastic shock wave having a combined loading and unloading time [approximate]10-20 ps. Owing to the time-dependent nature of elastic-plastic transformations, an elastic response is maintained for shock amplitudes exceeding the Hugoniot elastic limit determined from simulations of steady shock waves. However, for high-intensity laser pulses (absorbed laser fluence >0.6 J/cm super(2)), both elastic and plastic shock waves are formed independently from the initial high-pressure state. Acoustic pulses emitted by the plastic front support the motion of the elastic precursor resulting in a fluence-independent elastic amplitude; whereas the unsupported plastic front undergoes significant attenuation during propagation and may fully decay within the metal film. |
doi_str_mv | 10.1103/PhysRevB.87.054109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709779809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709779809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-9485be6c8c8e94970b6d1bc993212b24d7ce765bfa8bf62abd7d2acef31d127e3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURC0EEqXwA6y8ZJNy7TxsL6E8pUogRCV2lh83amiaFDspyt8TFNjMnMVoFoeQSwYLxiC9ft0M8Q0PtwspFpBnDNQRmbE8h4Sn-cfxyKBkAoyzU3IW4ycAy1TGZ-RuXXfBxE0bOjqm29Jvc8BIq4Y2ldtiPZLvHXpqB1rirmsjurbxtDYRA933dcR4Tk5KM8LFX8_J-uH-ffmUrF4en5c3q8RxCV2iMplbLJx0ElWmBNjCM-uUSjnjlmdeOBRFbksjbVlwY73w3DgsU-YZF5jOydX0uw_tV4-x07sqOqxr02DbR80EKCGUBDVO-TR1oY0xYKn3odqZMGgG-leZ_lempdCTsvQH7GpiOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709779809</pqid></control><display><type>article</type><title>Ultrashort shock waves in nickel induced by femtosecond laser pulses</title><source>American Physical Society Journals</source><creator>Demaske, Brian J. ; Zhakhovsky, Vasily V. ; Inogamov, Nail A. ; Oleynik, Ivan I.</creator><creatorcontrib>Demaske, Brian J. ; Zhakhovsky, Vasily V. ; Inogamov, Nail A. ; Oleynik, Ivan I.</creatorcontrib><description>The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low-intensity laser pulses, the highly pressurized subsurface layer breaks into a single elastic shock wave having a combined loading and unloading time [approximate]10-20 ps. Owing to the time-dependent nature of elastic-plastic transformations, an elastic response is maintained for shock amplitudes exceeding the Hugoniot elastic limit determined from simulations of steady shock waves. However, for high-intensity laser pulses (absorbed laser fluence >0.6 J/cm super(2)), both elastic and plastic shock waves are formed independently from the initial high-pressure state. Acoustic pulses emitted by the plastic front support the motion of the elastic precursor resulting in a fluence-independent elastic amplitude; whereas the unsupported plastic front undergoes significant attenuation during propagation and may fully decay within the metal film.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.87.054109</identifier><language>eng</language><subject>Amplitudes ; Condensed matter ; Elastic limit ; Femtosecond ; Lasers ; Nickel ; Shock waves ; Simulation</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2013-02, Vol.87 (5), Article 054109</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-9485be6c8c8e94970b6d1bc993212b24d7ce765bfa8bf62abd7d2acef31d127e3</citedby><cites>FETCH-LOGICAL-c280t-9485be6c8c8e94970b6d1bc993212b24d7ce765bfa8bf62abd7d2acef31d127e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Demaske, Brian J.</creatorcontrib><creatorcontrib>Zhakhovsky, Vasily V.</creatorcontrib><creatorcontrib>Inogamov, Nail A.</creatorcontrib><creatorcontrib>Oleynik, Ivan I.</creatorcontrib><title>Ultrashort shock waves in nickel induced by femtosecond laser pulses</title><title>Physical review. B, Condensed matter and materials physics</title><description>The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low-intensity laser pulses, the highly pressurized subsurface layer breaks into a single elastic shock wave having a combined loading and unloading time [approximate]10-20 ps. Owing to the time-dependent nature of elastic-plastic transformations, an elastic response is maintained for shock amplitudes exceeding the Hugoniot elastic limit determined from simulations of steady shock waves. However, for high-intensity laser pulses (absorbed laser fluence >0.6 J/cm super(2)), both elastic and plastic shock waves are formed independently from the initial high-pressure state. Acoustic pulses emitted by the plastic front support the motion of the elastic precursor resulting in a fluence-independent elastic amplitude; whereas the unsupported plastic front undergoes significant attenuation during propagation and may fully decay within the metal film.</description><subject>Amplitudes</subject><subject>Condensed matter</subject><subject>Elastic limit</subject><subject>Femtosecond</subject><subject>Lasers</subject><subject>Nickel</subject><subject>Shock waves</subject><subject>Simulation</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1kMtOwzAURC0EEqXwA6y8ZJNy7TxsL6E8pUogRCV2lh83amiaFDspyt8TFNjMnMVoFoeQSwYLxiC9ft0M8Q0PtwspFpBnDNQRmbE8h4Sn-cfxyKBkAoyzU3IW4ycAy1TGZ-RuXXfBxE0bOjqm29Jvc8BIq4Y2ldtiPZLvHXpqB1rirmsjurbxtDYRA933dcR4Tk5KM8LFX8_J-uH-ffmUrF4en5c3q8RxCV2iMplbLJx0ElWmBNjCM-uUSjnjlmdeOBRFbksjbVlwY73w3DgsU-YZF5jOydX0uw_tV4-x07sqOqxr02DbR80EKCGUBDVO-TR1oY0xYKn3odqZMGgG-leZ_lempdCTsvQH7GpiOQ</recordid><startdate>20130221</startdate><enddate>20130221</enddate><creator>Demaske, Brian J.</creator><creator>Zhakhovsky, Vasily V.</creator><creator>Inogamov, Nail A.</creator><creator>Oleynik, Ivan I.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130221</creationdate><title>Ultrashort shock waves in nickel induced by femtosecond laser pulses</title><author>Demaske, Brian J. ; Zhakhovsky, Vasily V. ; Inogamov, Nail A. ; Oleynik, Ivan I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-9485be6c8c8e94970b6d1bc993212b24d7ce765bfa8bf62abd7d2acef31d127e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amplitudes</topic><topic>Condensed matter</topic><topic>Elastic limit</topic><topic>Femtosecond</topic><topic>Lasers</topic><topic>Nickel</topic><topic>Shock waves</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demaske, Brian J.</creatorcontrib><creatorcontrib>Zhakhovsky, Vasily V.</creatorcontrib><creatorcontrib>Inogamov, Nail A.</creatorcontrib><creatorcontrib>Oleynik, Ivan I.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demaske, Brian J.</au><au>Zhakhovsky, Vasily V.</au><au>Inogamov, Nail A.</au><au>Oleynik, Ivan I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrashort shock waves in nickel induced by femtosecond laser pulses</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2013-02-21</date><risdate>2013</risdate><volume>87</volume><issue>5</issue><artnum>054109</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low-intensity laser pulses, the highly pressurized subsurface layer breaks into a single elastic shock wave having a combined loading and unloading time [approximate]10-20 ps. Owing to the time-dependent nature of elastic-plastic transformations, an elastic response is maintained for shock amplitudes exceeding the Hugoniot elastic limit determined from simulations of steady shock waves. However, for high-intensity laser pulses (absorbed laser fluence >0.6 J/cm super(2)), both elastic and plastic shock waves are formed independently from the initial high-pressure state. Acoustic pulses emitted by the plastic front support the motion of the elastic precursor resulting in a fluence-independent elastic amplitude; whereas the unsupported plastic front undergoes significant attenuation during propagation and may fully decay within the metal film.</abstract><doi>10.1103/PhysRevB.87.054109</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2013-02, Vol.87 (5), Article 054109 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_proquest_miscellaneous_1709779809 |
source | American Physical Society Journals |
subjects | Amplitudes Condensed matter Elastic limit Femtosecond Lasers Nickel Shock waves Simulation |
title | Ultrashort shock waves in nickel induced by femtosecond laser pulses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrashort%20shock%20waves%20in%20nickel%20induced%20by%20femtosecond%20laser%20pulses&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Demaske,%20Brian%20J.&rft.date=2013-02-21&rft.volume=87&rft.issue=5&rft.artnum=054109&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.87.054109&rft_dat=%3Cproquest_cross%3E1709779809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709779809&rft_id=info:pmid/&rfr_iscdi=true |