Ultrashort shock waves in nickel induced by femtosecond laser pulses
The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-02, Vol.87 (5), Article 054109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structure and evolution of ultrashort shock waves generated by femtosecond laser pulses in single-crystal nickel films are investigated by molecular dynamics simulations. Ultrafast laser heating is isochoric, leading to pressurization of a 100-nm-thick layer below the irradiated surface. For low-intensity laser pulses, the highly pressurized subsurface layer breaks into a single elastic shock wave having a combined loading and unloading time [approximate]10-20 ps. Owing to the time-dependent nature of elastic-plastic transformations, an elastic response is maintained for shock amplitudes exceeding the Hugoniot elastic limit determined from simulations of steady shock waves. However, for high-intensity laser pulses (absorbed laser fluence >0.6 J/cm super(2)), both elastic and plastic shock waves are formed independently from the initial high-pressure state. Acoustic pulses emitted by the plastic front support the motion of the elastic precursor resulting in a fluence-independent elastic amplitude; whereas the unsupported plastic front undergoes significant attenuation during propagation and may fully decay within the metal film. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.87.054109 |