Bold diagrammatic Monte Carlo technique for frustrated spin systems

Using fermionic representation of spin degrees of freedom within the Popov-Fedotov approach, we develop an algorithm for Monte Carlo sampling of skeleton Feynman diagrams for Heisenberg-type models. Our scheme works without modifications for any dimension of space, lattice geometry, and interaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-01, Vol.87 (2), Article 024407
Hauptverfasser: Kulagin, S. A., Prokof'ev, N., Starykh, O. A., Svistunov, B., Varney, C. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using fermionic representation of spin degrees of freedom within the Popov-Fedotov approach, we develop an algorithm for Monte Carlo sampling of skeleton Feynman diagrams for Heisenberg-type models. Our scheme works without modifications for any dimension of space, lattice geometry, and interaction range, i.e., it is suitable for dealing with frustrated magnetic systems at finite temperature. As a practical application, we compute uniform magnetic susceptibility of the antiferromagnetic Heisenberg model on the triangular lattice and compare our results with the best available high-temperature expansions. We also report results for the momentum dependence of the static magnetic susceptibility throughout the Brillouin zone.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.87.024407