Low-energy electron-phonon effective action from symmetry analysis

Based on a detailed symmetry analysis, we state the general rules to build up the effective low-energy field theory describing a system of electrons weakly interacting with the lattice degrees of freedom. The basic elements in our construction are what we call the "memory tensors," which k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-07, Vol.88 (4), Article 045126
Hauptverfasser: Cabra, D. C., Grandi, N. E., Silva, G. A., Sturla, M. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on a detailed symmetry analysis, we state the general rules to build up the effective low-energy field theory describing a system of electrons weakly interacting with the lattice degrees of freedom. The basic elements in our construction are what we call the "memory tensors," which keep track of the microscopic discrete symmetries into the coarse-grained action. The present approach can be applied to lattice systems in arbitrary dimensions and in a systematic way to any desired order in derivatives. We apply the method to the honeycomb lattice and reobtain the by-now well-known effective action of Dirac fermions coupled to fictitious gauge fields. As a second example, we derive the effective action for electrons in the kagome lattice, where our approach allows us to obtain in a simple way the low-energy electron-phonon coupling terms.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.88.045126