Regime mapping and the role of the intermediate region in wall-coated microreactors

Operation of a wall-coated microreactor can occur in several mass transfer-reaction regimes. We define these regimes analytically in several planes of a multi-parametric map, taking into account the different degrees of concentration profile development, as well as the influence of non-unity orders...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2013-05, Vol.94, p.166-184
Hauptverfasser: Lopes, J.P., Alves, M.A., Oliveira, M.S.N., Cardoso, S.S.S., Rodrigues, A.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Operation of a wall-coated microreactor can occur in several mass transfer-reaction regimes. We define these regimes analytically in several planes of a multi-parametric map, taking into account the different degrees of concentration profile development, as well as the influence of non-unity orders of reaction and reactant inhibition in the kinetic law. It was found that the regions where conversion can be calculated from simplified mass transfer models are not discriminated by common results for entrance-length. We also illustrate the trade-offs that exist across this operating map concerning the catalyst design (costs associated with loading and volume) and overall system performance (evaluated in terms of reactant conversion, flow efficiency and microreactor effectiveness). It is shown that under certain conditions, the existence of moderate mass transfer resistance can be advantageous (even if internal limitations cannot be avoided), clarifying the role of the intermediate transport-reaction region. [Display omitted] ► Regime maps for the diagnosis of mass transfer limitations. ► Applicability of mass transfer models with finite wall kinetics. ► Effect of nonlinear and inhibited kinetics on operating regimes. ► Conversion, flow efficiency and effectiveness balance in the intermediate region.
ISSN:0009-2509
1873-4405
DOI:10.1016/j.ces.2013.02.037