Probe spectroscopy of quasienergy states

The present qubit technology, in particular, in Josephson qubits, allows an unprecedented control of discrete energy levels. This motivates a new study of the old pump-probe problem, where a discrete quantum system is driven by a strong drive and simultaneously probed by a weaker one. The strong dri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-04, Vol.87 (13), Article 134505
Hauptverfasser: Silveri, Matti, Tuorila, Jani, Kemppainen, Mika, Thuneberg, Erkki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present qubit technology, in particular, in Josephson qubits, allows an unprecedented control of discrete energy levels. This motivates a new study of the old pump-probe problem, where a discrete quantum system is driven by a strong drive and simultaneously probed by a weaker one. The strong drive is included by the Floquet method and the resulting quasienergy states are then studied with the probe. We study a qubit where the harmonic drive has a significant longitudinal component relative to the static equilibrium state of the qubit. Both analytical and numerical methods are used to solve the problem. We present calculations with realistic parameters and compare the results with recent experimental results. A short introduction to the Floquet method and the probe absorption is given.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.87.134505