Theory of spin pumping through an interacting quantum dot tunnel coupled to a ferromagnet with time-dependent magnetization

We investigate two schemes for pumping spin adiabatically from a ferromagnet through an interacting quantum dot into a normal lead that exploit the possibility to vary in time the ferromagnet's magnetization, either its amplitude or its direction. For this purpose, we extend a diagrammatic real...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-04, Vol.87 (15), Article 155428
Hauptverfasser: Winkler, Nina, Governale, Michele, König, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate two schemes for pumping spin adiabatically from a ferromagnet through an interacting quantum dot into a normal lead that exploit the possibility to vary in time the ferromagnet's magnetization, either its amplitude or its direction. For this purpose, we extend a diagrammatic real-time technique for pumping to situations in which the leads' properties are time dependent. In the first scheme, the time-dependent magnetization amplitude is combined with a time-dependent level position of the quantum dot to establish both a charge and a spin current. The second scheme uses a uniform rotation of the ferromagnet's magnetization direction to generate a pure spin current without a charge current. We discuss the influence of an interaction-induced exchange field on the pumping characteristics.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.87.155428