Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies

We report on the dual nature (capacitive and inductive) of the surface impedance of periodic graphene patches at low-terahertz frequencies. The transmission spectra of a graphene-dielectric stack shows that patterned graphene exhibits both the low-frequency (capacitive) passband of metal patch array...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-03, Vol.87 (11), Article 115401
Hauptverfasser: Padooru, Yashwanth R., Yakovlev, Alexander B., Kaipa, Chandra S. R., Hanson, George W., Medina, Francisco, Mesa, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on the dual nature (capacitive and inductive) of the surface impedance of periodic graphene patches at low-terahertz frequencies. The transmission spectra of a graphene-dielectric stack shows that patterned graphene exhibits both the low-frequency (capacitive) passband of metal patch arrays and the higher-frequency (inductive) passband of metal aperture arrays in a single tunable configuration. The analysis is carried out using a transfer-matrix approach with two-sided impedance boundary conditions, and the results are verified using full-wave numerical simulations. In addition, the Bloch-wave analysis of the corresponding infinite periodic structure is presented in order to explain the passband and stopband characteristics of the finite graphene-dielectric stack.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.87.115401