Seasonal variation in albedo and radiation exchange between a burned and unburned forested peatland: implications for peatland evaporation

Forested boreal peatlands represent a precipitation‐dependent ecosystem that is prone to wildfire disturbance. Solar radiation exchange in forested peatlands is modified by the growth of a heterogeneous, open‐crown tree canopy, as well as by likely disturbance from wildfire. Radiation exchange at th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2015-07, Vol.29 (14), p.3227-3235
Hauptverfasser: Thompson, Dan K., Baisley, Andrew S., Waddington, James Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forested boreal peatlands represent a precipitation‐dependent ecosystem that is prone to wildfire disturbance. Solar radiation exchange in forested peatlands is modified by the growth of a heterogeneous, open‐crown tree canopy, as well as by likely disturbance from wildfire. Radiation exchange at the peat surface is important in peatlands, as evaporation from the peat surface is the dominant pathway of water loss in peatlands of continental western North America. We examined shortwave and longwave radiation exchange in two forested ombrotrophic peatlands of central Alberta, Canada: one with (>75 years since wildfire; unburned) and another without a living spruce canopy (1–4 years since wildfire; burned) between the autumn of 2007 and 2010. Above‐canopy winter albedo was nearly two times greater in the recently burned peatland than the unburned peatland. Incoming shortwave radiation at the peat surface was much higher at the burned peatland, which increases the amount of energy available for evaporation. This is especially true for hollow microforms that are generally shaded by the tree canopy in unburned peatlands. Snow‐free albedo was similar between peatlands, although an increase in longwave losses at the burned site resulted in slightly greater net radiation at the unburned site. Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.10436