Prospects and challenges of touchless electrostatic detumbling of small bodies

The prospects of touchlessly detumbling a small, multiple meters in size, space object using electrostatic forces are intriguing. Physically capturing an object with a large rotation rate poses significant momentum transfer and collision risks. If the spin rate is reduced to less than 1deg/s, relati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2015-08, Vol.56 (3), p.557-568
Hauptverfasser: Bennett, Trevor, Stevenson, Daan, Hogan, Erik, Schaub, Hanspeter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prospects of touchlessly detumbling a small, multiple meters in size, space object using electrostatic forces are intriguing. Physically capturing an object with a large rotation rate poses significant momentum transfer and collision risks. If the spin rate is reduced to less than 1deg/s, relative motion sensing and control associated with mechanical docking becomes manageable. In particular, this paper surveys the prospects and challenges of detumbling large debris objects near Geostationary Earth Orbit for active debris remediation, and investigates if such electrostatic tractors are suitable for small asteroids being considered for asteroid retrieval missions. Active charge transfer is used to impart arresting electrostatic torques on such objects, given that they are sufficiently non-spherical. The concept of touchless electrostatic detumbling of space debris is outlined through analysis and experiments and is shown to hold great promise to arrest the rotation within days to weeks. However, even conservatively optimistic simulations of small asteroid detumbling scenarios indicate that such a method could take over a year to arrest the asteroid rotation. The numerical debris detumbling simulation includes a charge transfer model in a space environment, and illustrates how a conducting rocket body could be despun without physical contact.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2015.03.037