Preparation of an Ultra-Thin, Highly Filled, Neutron-Shielding Material
We develop an ultra-thin, highly filled, neutron-shielding material. This material exhibits a desirable neutron-shielding performance, and also has certain advantageous mechanical properties and uses. We study the physical properties of shielding materials with different polyolefins as base material...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2015-03, Vol.815, p.616-621 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop an ultra-thin, highly filled, neutron-shielding material. This material exhibits a desirable neutron-shielding performance, and also has certain advantageous mechanical properties and uses. We study the physical properties of shielding materials with different polyolefins as base materials, and investigate the neutron-shielding performance of boron-containing and lithium-containing shielding materials. We furthermore report on the effect of additive amounts of functional additives on shielding properties and physical-chemical properties. We additionally study the effect of radiation crosslinking technology on shielding material properties. We show that, using ethylene-octene copolymer (POE) modified low-density polyethylene (PE-LD), the additive amounts of boron carbide (B4C) and nano-montmorillonite (OMMT) are 60–70% and 4%, respectively. The optimal radiation dose is 160 kGy, and the shielding materials exhibit good neutron-shielding performance and mechanical strength. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.815.616 |