Porosity-induced emission: exploring color-controllable fluorescence of porous organic polymers and their chemical sensing applications

Most organic dyes dissipate their excitation energy in the aggregated state because of the “aggregation-caused quenching” effect, deteriorating their application in optoelectronic devices. To prevent the “aggregation-caused quenching” effect, we incorporate a dye-based fluorophore into a porous orga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2015-01, Vol.3 (26), p.6876-6881
Hauptverfasser: Li, Yankai, Bi, Shiming, Liu, Fei, Wu, Shengying, Hu, Jun, Wang, Limin, Liu, Honglai, Hu, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most organic dyes dissipate their excitation energy in the aggregated state because of the “aggregation-caused quenching” effect, deteriorating their application in optoelectronic devices. To prevent the “aggregation-caused quenching” effect, we incorporate a dye-based fluorophore into a porous organic polymer skeleton because porosity would allow the spatial isolation of fluorophores to maintain their emission. Tuning the fraction of fluorophores in the skeleton of FL-SNW-DPPs could spread the emission color coverage from red to blue in both solid-state and suspension. More importantly, the combination of fluorescence and porosity of FL-SNW-DPPs would provide more space to transduce the molecular interaction between adsorbed analytes and fluorophores to the detectable changes in light emission, leading to the fluorescence-off or fluorescence-on detection of electron-deficient or electron-rich analytes.
ISSN:2050-7526
2050-7534
DOI:10.1039/C5TC00682A