A Novel Stabilization Method of LC Input Filter With Constant Power Loads Without Load Performance Compromise in DC Microgrids

In dc microgrids, it is common that constant power loads (CPLs) exhibit negative incremental resistance. They degrade the stability margin of operation with their LC input filters and, thus, the whole system. In traditional active-damping methods, the extra stabilizing current is injected into CPLs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2015-07, Vol.62 (7), p.4552-4562
Hauptverfasser: Mingfei Wu, Lu, Dylan Dah-Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In dc microgrids, it is common that constant power loads (CPLs) exhibit negative incremental resistance. They degrade the stability margin of operation with their LC input filters and, thus, the whole system. In traditional active-damping methods, the extra stabilizing current is injected into CPLs to modify its input impedance to fulfill stability criteria. However, this injected current may cause undesirable performance of the loads, e.g., fluctuation in rotating speed of tightly regulated motors. There is always a compromise between stability margin and load performances. In order to overcome this drawback, this paper proposes a method that stabilizes the system from source-side converters, instead of from CPL themselves. In the proposed method, a virtual resistance is built in the source-side converter. This virtual resistor is effective around the resonant frequency of the LC input filter and thus can indirectly reduce its output impedance to fulfill Middlebrook's stability criterion. This paper also proves, both analytically and experimentally, that, in dc microgrids, resonant frequencies of LC filters of paralleled CPLs have to be different to maintain system stability. Simulation and experimental results are reported to verify the effectiveness of the proposed idea.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2014.2367005