Membrane amplitude and triaxial stress in twisted bilayer graphene deciphered using first-principles directed elasticity theory and scanning tunneling microscopy

Twisted graphene layers produce a moire pattern (MR) structure with a predetermined wavelength for a given twist angle. However, predicting the membrane corrugation amplitude for any angle other than pure AB-stacked or AA-stacked graphene is impossible using first-principles density functional theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-08, Vol.90 (6), Article 064101
Hauptverfasser: Neek-Amal, M., Xu, P., Qi, D., Thibado, P. M., Nyakiti, L. O., Wheeler, V. D., Myers-Ward, R. L., Eddy, C. R., Gaskill, D. K., Peeters, F. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Twisted graphene layers produce a moire pattern (MR) structure with a predetermined wavelength for a given twist angle. However, predicting the membrane corrugation amplitude for any angle other than pure AB-stacked or AA-stacked graphene is impossible using first-principles density functional theory (DFT) due to the large supercell. Here, within elasticity theory, we define the MR structure as the minimum-energy configuration, thereby leaving the height amplitude as the only unknown parameter. The latter is determined from DFT calculations for AB- and AA-stacked bilayer graphene in order to eliminate all fitting parameters. Excellent agreement with scanning tunneling microscopy results across multiple substrates is reported as a function of twist angle.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.90.064101