Exact NMR simulation of protein-size spin systems using tensor train formalism

The authors employ a matrix product state formalism to study time-dependent spin Hamiltonians which arise in the study of NMR spectra of proteins. We introduce a new method, based on alternating optimization, for compact representation of spin Hamiltonians and solution of linear systems of algebraic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-08, Vol.90 (8), Article 085139
Hauptverfasser: Savostyanov, D. V., Dolgov, S. V., Werner, J. M., Kuprov, Ilya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors employ a matrix product state formalism to study time-dependent spin Hamiltonians which arise in the study of NMR spectra of proteins. We introduce a new method, based on alternating optimization, for compact representation of spin Hamiltonians and solution of linear systems of algebraic equations in the tensor train format. We demonstrate the method's utility by simulating, without approximations, a super(15)N NMR spectrum of ubiquitin-a protein containing several hundred interacting nuclear spins. Existing simulation algorithms for the spin system and the NMR experiment in question either require significant approximations or scale exponentially with the spin system size. We compare the proposed method to the SPINACH package that uses heuristic restricted state space techniques to achieve polynomial complexity scaling. When the spin system topology is close to a linear chain (e.g., for the backbone of a protein), the tensor train representation is more compact and can be computed faster than the sparse representation using restricted state spaces.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.90.085139