Enhanced thermoelectric performance of phosphorene by strain-induced band convergence
The newly emerging monolayer phosphorene was recently predicted to be a promising thermoelectric material. In this work, we propose to further enhance the thermoelectric performance of phosphorene using the strain-induced band convergence. The effect of the uniaxial strain on the thermoelectric prop...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-08, Vol.90 (8), Article 085433 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The newly emerging monolayer phosphorene was recently predicted to be a promising thermoelectric material. In this work, we propose to further enhance the thermoelectric performance of phosphorene using the strain-induced band convergence. The effect of the uniaxial strain on the thermoelectric properties of phosphorene was investigated by using the first-principles calculations combined with the semiclassical Boltzmann theory. When the zigzag-direction strain is applied, the Seebeck coefficient and electrical conductivity in the zigzag direction can simultaneously be greatly enhanced at the critical strain of 5%, at which the band convergence is achieved. The largest ZT value of 1.65 at 300 K is then conservatively estimated by using the bulk lattice thermal conductivity. When the armchair-direction strain of 8% is applied, the room-temperature ZT value can reach 2.12 in the armchair direction of phosphorene. Our results indicate that strain-induced band convergence could be an effective method to enhance the thermoelectric performance of phosphorene. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.90.085433 |