PPS/recycled PEEK/ carbon nanotube composites: Structure, properties and compatibility

ABSTRACT Blends of poly(phenylene sulfide) (PPS) and recycled poly(ether ether ketone) (r‐PEEK) were prepared using a twin‐screw extruder. The carbon nanotube (CNT) added to the blends not only improved the compatibility of the two polymers, but also affected the morphology of the immiscible PPS/r‐P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2015-09, Vol.132 (35), p.n/a
Hauptverfasser: Deng, Shuling, Lin, Zhidan, Cao, Lin, Xian, Jiaming, Liu, Chunyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Blends of poly(phenylene sulfide) (PPS) and recycled poly(ether ether ketone) (r‐PEEK) were prepared using a twin‐screw extruder. The carbon nanotube (CNT) added to the blends not only improved the compatibility of the two polymers, but also affected the morphology of the immiscible PPS/r‐PEEK blends. R‐PEEK always forms the dispersed phase and PPS the continuous phase in such blends. In the composite, CNT particles were observed in the PPS phase, mostly distributes in the interface between PPS and PEEK. The results show that r‐PEEK improves the impact and tensile strength of PPS, but does not provide nucleation effect on PPS. However, CNT improved the flexural modulus of PPS/r‐PEEK blends and promoted the crystallization of r‐PEEK rather than that of PPS. The prepared PPS/r‐PEEK blends provided larger electrical conductivity than neat polymers. Adding 20 wt % CNT to blend resulted in composite with the minimum volume resistivity, a reduction of four orders of magnitude, compared with that of the neat blend. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42497.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.42497