Raman activity of sp super(3) carbon allotropes under pressure: A density functional theory study
Raman spectroscopy is a powerful tool to study the intrinsic vibrational characteristics of crystals, and, therefore, it is an adequate technique to explore phase transitions of carbon under pressure. However, the diamond-anvil cell, which is used in experiments to apply pressure, appears as a broad...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-04, Vol.85 (15) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Raman spectroscopy is a powerful tool to study the intrinsic vibrational characteristics of crystals, and, therefore, it is an adequate technique to explore phase transitions of carbon under pressure. However, the diamond-anvil cell, which is used in experiments to apply pressure, appears as a broad intense feature in the spectra. This feature lies, unfortunately, in the same range as the principal modes of recently proposed sp super(3) carbon structures. As these modes are hard to distinguish from the diamond cell background, we analyze all Raman-active modes present in the sp super(3) carbon structures in order to find detectable fingerprint features for an experimental identification. |
---|---|
ISSN: | 1098-0121 1550-235X |