Band engineering in nanowires: Ab initio model of band edges modified by (111) biaxial strain in group IIIA-VA semiconductors

Quantum dots in nanowires grow on a (111) substrate and it is expected that the modifications of the band structure due to a biaxial strain in the (111) crystallographic plane will determine the confinement of charge carriers in these systems. In this work, we develop an ab initio methodology for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-08, Vol.86 (8), Article 085411
Hauptverfasser: Kadantsev, Eugene S., Zieliński, Michał, Hawrylak, Pawel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum dots in nanowires grow on a (111) substrate and it is expected that the modifications of the band structure due to a biaxial strain in the (111) crystallographic plane will determine the confinement of charge carriers in these systems. In this work, we develop an ab initio methodology for the determination of biaxial strain-modified band energies on an absolute energy scale due to a strain in an arbitrary crystallographic plane and apply it to calculate the evolution of band edges in group IIIA-VA zinc-blende semiconductors (InP, InAs, and GaAs) under the (111) biaxial strain. The absolute hydrostatic deformation potentials, a prerequisite for the accurate calculation of the strain-modified band energies within our scheme, are determined. The strain tensor for an InAs dot grown on a (111) GaAs substrate is calculated and the importance of the (111) biaxial strain is demonstrated. The strained band offsets in InAs under a compressive biaxial strain in the (001) and (111) crystallographic planes as well as the local band structure in a InAs/GaAs dot indicates a stronger confinement of holes in the (111) case.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.86.085411