A Review and Meta-Analysis of Multimodal Affect Detection Systems
Affect detection is an important pattern recognition problem that has inspired researchers from several areas. The field is in need of a systematic review due to the recent influx of Multimodal (MM) affect detection systems that differ in several respects and sometimes yield incompatible results. Th...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2015-04, Vol.47 (3), p.1-36 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Affect detection is an important pattern recognition problem that has inspired researchers from several areas. The field is in need of a systematic review due to the recent influx of Multimodal (MM) affect detection systems that differ in several respects and sometimes yield incompatible results. This article provides such a survey via a quantitative review and meta-analysis of 90 peer-reviewed MM systems. The review indicated that the state of the art mainly consists of person-dependent models (62.2% of systems) that fuse audio and visual (55.6%) information to detect acted (52.2%) expressions of basic emotions and simple dimensions of arousal and valence (64.5%) with feature- (38.9%) and decision-level (35.6%) fusion techniques. However, there were also person-independent systems that considered additional modalities to detect nonbasic emotions and complex dimensions using model-level fusion techniques. The meta-analysis revealed that MM systems were consistently (85% of systems) more accurate than their best unimodal counterparts, with an average improvement of 9.83% (median of 6.60%). However, improvements were three times lower when systems were trained on natural (4.59%) versus acted data (12.7%). Importantly, MM accuracy could be accurately predicted (cross-validated
R
2
of 0.803) from unimodal accuracies and two system-level factors. Theoretical and applied implications and recommendations are discussed. |
---|---|
ISSN: | 0360-0300 1557-7341 |
DOI: | 10.1145/2682899 |