Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm
For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a par...
Gespeichert in:
Veröffentlicht in: | Shanghai jiao tong da xue xue bao 2015-02, Vol.20 (1), p.51-55 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Shanghai jiao tong da xue xue bao |
container_volume | 20 |
creator | 毛力 宋益春 李引 杨弘 肖炜 |
description | For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance |
doi_str_mv | 10.1007/s12204-015-1587-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709733572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663609441</cqvip_id><sourcerecordid>1709733572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263x-2c707863472dbd85780fb60f846bb1df0573d41af280b0e59a5e2db89b9c38ac3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEEqXwA9gsJhbD2U5iZyyIlkqlSAhmy3GcNlUSt3YDbX89rlIxMt1J9717dy-Kbgk8EAD-6AmlEGMgCSaJ4Hh3Fg1IliVYECHOQx8gTAinl9GV9yuAGBjLBtHkw3ijnF4iW6Jps3b22xRo3B0Oe6RxY1Tr0aheWFdtlw16Uj5MbYsUmpsf9Ga2rtJobl1zHV2Uqvbm5lSH0df45fP5Fc_eJ9Pn0QxrmrIdppoDFymLOS3yQiRcQJmnUIo4zXNSlJBwVsRElVRADibJVGICKbI800wozYbRfb83XLrpjN_KpvLa1LVqje28JBwyzljCaUBJj2pnvXemlGtXNcrtJQF5zEP2ockQmjyGJndBQ3uND2y7ME6ubOfa8NG_oruT0dK2i03Q_TmlKUshi2PCfgF5MXna</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709733572</pqid></control><display><type>article</type><title>Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm</title><source>SpringerNature Complete Journals</source><source>Alma/SFX Local Collection</source><creator>毛力 宋益春 李引 杨弘 肖炜</creator><creatorcontrib>毛力 宋益春 李引 杨弘 肖炜</creatorcontrib><description>For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance</description><identifier>ISSN: 1007-1172</identifier><identifier>EISSN: 1995-8188</identifier><identifier>DOI: 10.1007/s12204-015-1587-x</identifier><language>eng</language><publisher>Heidelberg: Shanghai Jiaotong University Press</publisher><subject>Algorithms ; Architecture ; Clustering ; Computer Science ; Electrical Engineering ; Engineering ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Life Sciences ; Materials Science ; Norms ; Optimization ; Swarm intelligence</subject><ispartof>Shanghai jiao tong da xue xue bao, 2015-02, Vol.20 (1), p.51-55</ispartof><rights>Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263x-2c707863472dbd85780fb60f846bb1df0573d41af280b0e59a5e2db89b9c38ac3</citedby><cites>FETCH-LOGICAL-c263x-2c707863472dbd85780fb60f846bb1df0573d41af280b0e59a5e2db89b9c38ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85391X/85391X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12204-015-1587-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12204-015-1587-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>毛力 宋益春 李引 杨弘 肖炜</creatorcontrib><title>Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm</title><title>Shanghai jiao tong da xue xue bao</title><addtitle>J. Shanghai Jiaotong Univ. (Sci.)</addtitle><addtitle>Journal of Shanghai Jiaotong university</addtitle><description>For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Norms</subject><subject>Optimization</subject><subject>Swarm intelligence</subject><issn>1007-1172</issn><issn>1995-8188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhSMEEqXwA9gsJhbD2U5iZyyIlkqlSAhmy3GcNlUSt3YDbX89rlIxMt1J9717dy-Kbgk8EAD-6AmlEGMgCSaJ4Hh3Fg1IliVYECHOQx8gTAinl9GV9yuAGBjLBtHkw3ijnF4iW6Jps3b22xRo3B0Oe6RxY1Tr0aheWFdtlw16Uj5MbYsUmpsf9Ga2rtJobl1zHV2Uqvbm5lSH0df45fP5Fc_eJ9Pn0QxrmrIdppoDFymLOS3yQiRcQJmnUIo4zXNSlJBwVsRElVRADibJVGICKbI800wozYbRfb83XLrpjN_KpvLa1LVqje28JBwyzljCaUBJj2pnvXemlGtXNcrtJQF5zEP2ockQmjyGJndBQ3uND2y7ME6ubOfa8NG_oruT0dK2i03Q_TmlKUshi2PCfgF5MXna</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>毛力 宋益春 李引 杨弘 肖炜</creator><general>Shanghai Jiaotong University Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm</title><author>毛力 宋益春 李引 杨弘 肖炜</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263x-2c707863472dbd85780fb60f846bb1df0573d41af280b0e59a5e2db89b9c38ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Norms</topic><topic>Optimization</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>毛力 宋益春 李引 杨弘 肖炜</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Shanghai jiao tong da xue xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>毛力 宋益春 李引 杨弘 肖炜</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm</atitle><jtitle>Shanghai jiao tong da xue xue bao</jtitle><stitle>J. Shanghai Jiaotong Univ. (Sci.)</stitle><addtitle>Journal of Shanghai Jiaotong university</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>20</volume><issue>1</issue><spage>51</spage><epage>55</epage><pages>51-55</pages><issn>1007-1172</issn><eissn>1995-8188</eissn><abstract>For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance</abstract><cop>Heidelberg</cop><pub>Shanghai Jiaotong University Press</pub><doi>10.1007/s12204-015-1587-x</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-1172 |
ispartof | Shanghai jiao tong da xue xue bao, 2015-02, Vol.20 (1), p.51-55 |
issn | 1007-1172 1995-8188 |
language | eng |
recordid | cdi_proquest_miscellaneous_1709733572 |
source | SpringerNature Complete Journals; Alma/SFX Local Collection |
subjects | Algorithms Architecture Clustering Computer Science Electrical Engineering Engineering Fuzzy Fuzzy logic Fuzzy set theory Life Sciences Materials Science Norms Optimization Swarm intelligence |
title | Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20of%20Improved%20Fuzzy%20c-means%20Algorithm%20Based%20on%20a%20New%20Metric%20Norm&rft.jtitle=Shanghai%20jiao%20tong%20da%20xue%20xue%20bao&rft.au=%E6%AF%9B%E5%8A%9B%20%E5%AE%8B%E7%9B%8A%E6%98%A5%20%E6%9D%8E%E5%BC%95%20%E6%9D%A8%E5%BC%98%20%E8%82%96%E7%82%9C&rft.date=2015-02-01&rft.volume=20&rft.issue=1&rft.spage=51&rft.epage=55&rft.pages=51-55&rft.issn=1007-1172&rft.eissn=1995-8188&rft_id=info:doi/10.1007/s12204-015-1587-x&rft_dat=%3Cproquest_cross%3E1709733572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709733572&rft_id=info:pmid/&rft_cqvip_id=663609441&rfr_iscdi=true |