Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm

For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shanghai jiao tong da xue xue bao 2015-02, Vol.20 (1), p.51-55
1. Verfasser: 毛力 宋益春 李引 杨弘 肖炜
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 51
container_title Shanghai jiao tong da xue xue bao
container_volume 20
creator 毛力 宋益春 李引 杨弘 肖炜
description For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance
doi_str_mv 10.1007/s12204-015-1587-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1709733572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663609441</cqvip_id><sourcerecordid>1709733572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263x-2c707863472dbd85780fb60f846bb1df0573d41af280b0e59a5e2db89b9c38ac3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEEqXwA9gsJhbD2U5iZyyIlkqlSAhmy3GcNlUSt3YDbX89rlIxMt1J9717dy-Kbgk8EAD-6AmlEGMgCSaJ4Hh3Fg1IliVYECHOQx8gTAinl9GV9yuAGBjLBtHkw3ijnF4iW6Jps3b22xRo3B0Oe6RxY1Tr0aheWFdtlw16Uj5MbYsUmpsf9Ga2rtJobl1zHV2Uqvbm5lSH0df45fP5Fc_eJ9Pn0QxrmrIdppoDFymLOS3yQiRcQJmnUIo4zXNSlJBwVsRElVRADibJVGICKbI800wozYbRfb83XLrpjN_KpvLa1LVqje28JBwyzljCaUBJj2pnvXemlGtXNcrtJQF5zEP2ockQmjyGJndBQ3uND2y7ME6ubOfa8NG_oruT0dK2i03Q_TmlKUshi2PCfgF5MXna</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709733572</pqid></control><display><type>article</type><title>Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm</title><source>SpringerNature Complete Journals</source><source>Alma/SFX Local Collection</source><creator>毛力 宋益春 李引 杨弘 肖炜</creator><creatorcontrib>毛力 宋益春 李引 杨弘 肖炜</creatorcontrib><description>For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance</description><identifier>ISSN: 1007-1172</identifier><identifier>EISSN: 1995-8188</identifier><identifier>DOI: 10.1007/s12204-015-1587-x</identifier><language>eng</language><publisher>Heidelberg: Shanghai Jiaotong University Press</publisher><subject>Algorithms ; Architecture ; Clustering ; Computer Science ; Electrical Engineering ; Engineering ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Life Sciences ; Materials Science ; Norms ; Optimization ; Swarm intelligence</subject><ispartof>Shanghai jiao tong da xue xue bao, 2015-02, Vol.20 (1), p.51-55</ispartof><rights>Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263x-2c707863472dbd85780fb60f846bb1df0573d41af280b0e59a5e2db89b9c38ac3</citedby><cites>FETCH-LOGICAL-c263x-2c707863472dbd85780fb60f846bb1df0573d41af280b0e59a5e2db89b9c38ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85391X/85391X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12204-015-1587-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12204-015-1587-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>毛力 宋益春 李引 杨弘 肖炜</creatorcontrib><title>Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm</title><title>Shanghai jiao tong da xue xue bao</title><addtitle>J. Shanghai Jiaotong Univ. (Sci.)</addtitle><addtitle>Journal of Shanghai Jiaotong university</addtitle><description>For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Clustering</subject><subject>Computer Science</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Norms</subject><subject>Optimization</subject><subject>Swarm intelligence</subject><issn>1007-1172</issn><issn>1995-8188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhSMEEqXwA9gsJhbD2U5iZyyIlkqlSAhmy3GcNlUSt3YDbX89rlIxMt1J9717dy-Kbgk8EAD-6AmlEGMgCSaJ4Hh3Fg1IliVYECHOQx8gTAinl9GV9yuAGBjLBtHkw3ijnF4iW6Jps3b22xRo3B0Oe6RxY1Tr0aheWFdtlw16Uj5MbYsUmpsf9Ga2rtJobl1zHV2Uqvbm5lSH0df45fP5Fc_eJ9Pn0QxrmrIdppoDFymLOS3yQiRcQJmnUIo4zXNSlJBwVsRElVRADibJVGICKbI800wozYbRfb83XLrpjN_KpvLa1LVqje28JBwyzljCaUBJj2pnvXemlGtXNcrtJQF5zEP2ockQmjyGJndBQ3uND2y7ME6ubOfa8NG_oruT0dK2i03Q_TmlKUshi2PCfgF5MXna</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>毛力 宋益春 李引 杨弘 肖炜</creator><general>Shanghai Jiaotong University Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm</title><author>毛力 宋益春 李引 杨弘 肖炜</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263x-2c707863472dbd85780fb60f846bb1df0573d41af280b0e59a5e2db89b9c38ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Clustering</topic><topic>Computer Science</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Norms</topic><topic>Optimization</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>毛力 宋益春 李引 杨弘 肖炜</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Shanghai jiao tong da xue xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>毛力 宋益春 李引 杨弘 肖炜</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm</atitle><jtitle>Shanghai jiao tong da xue xue bao</jtitle><stitle>J. Shanghai Jiaotong Univ. (Sci.)</stitle><addtitle>Journal of Shanghai Jiaotong university</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>20</volume><issue>1</issue><spage>51</spage><epage>55</epage><pages>51-55</pages><issn>1007-1172</issn><eissn>1995-8188</eissn><abstract>For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance</abstract><cop>Heidelberg</cop><pub>Shanghai Jiaotong University Press</pub><doi>10.1007/s12204-015-1587-x</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-1172
ispartof Shanghai jiao tong da xue xue bao, 2015-02, Vol.20 (1), p.51-55
issn 1007-1172
1995-8188
language eng
recordid cdi_proquest_miscellaneous_1709733572
source SpringerNature Complete Journals; Alma/SFX Local Collection
subjects Algorithms
Architecture
Clustering
Computer Science
Electrical Engineering
Engineering
Fuzzy
Fuzzy logic
Fuzzy set theory
Life Sciences
Materials Science
Norms
Optimization
Swarm intelligence
title Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20of%20Improved%20Fuzzy%20c-means%20Algorithm%20Based%20on%20a%20New%20Metric%20Norm&rft.jtitle=Shanghai%20jiao%20tong%20da%20xue%20xue%20bao&rft.au=%E6%AF%9B%E5%8A%9B%20%E5%AE%8B%E7%9B%8A%E6%98%A5%20%E6%9D%8E%E5%BC%95%20%E6%9D%A8%E5%BC%98%20%E8%82%96%E7%82%9C&rft.date=2015-02-01&rft.volume=20&rft.issue=1&rft.spage=51&rft.epage=55&rft.pages=51-55&rft.issn=1007-1172&rft.eissn=1995-8188&rft_id=info:doi/10.1007/s12204-015-1587-x&rft_dat=%3Cproquest_cross%3E1709733572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709733572&rft_id=info:pmid/&rft_cqvip_id=663609441&rfr_iscdi=true