Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm
For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a par...
Gespeichert in:
Veröffentlicht in: | Shanghai jiao tong da xue xue bao 2015-02, Vol.20 (1), p.51-55 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance |
---|---|
ISSN: | 1007-1172 1995-8188 |
DOI: | 10.1007/s12204-015-1587-x |