Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm

For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shanghai jiao tong da xue xue bao 2015-02, Vol.20 (1), p.51-55
1. Verfasser: 毛力 宋益春 李引 杨弘 肖炜
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance
ISSN:1007-1172
1995-8188
DOI:10.1007/s12204-015-1587-x