Local density of states of chiral Hall edge states in gyrotropic photonic clusters

We have constructed the Green's tensor for two-dimensional gyrotropic photonic clusters and have calculated their optical local density of states (LDOS). For clusters that support the chiral Hall edge states we calculate the LDOS as a function of wavelength, position, size, and shape of the clu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2013-07, Vol.88 (3), Article 035127
Hauptverfasser: Asatryan, Ara A., Botten, Lindsay C., Fang, Kejie, Fan, Shanhui, McPhedran, Ross C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have constructed the Green's tensor for two-dimensional gyrotropic photonic clusters and have calculated their optical local density of states (LDOS). For clusters that support the chiral Hall edge states we calculate the LDOS as a function of wavelength, position, size, and shape of the cluster. It is shown that the LDOS of Hall edge states is a strong function of the cluster shape and position. The LDOS can be orders of magnitude higher at the edges of the cluster compared to the free space value while it vanishes towards the cluster center. It is shown that the LDOS in such photonic clusters can withstand a very strong disorder due to their topological protection. The spatial profiles of chiral Hall edge modes, their quality factors, and their excitations have been calculated. Both gyroelectric and gyromagnetic (ferrite) clusters have been treated.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.88.035127