Part I. Mechanism of oxidation of Cr2AlC films in temperature range 700-1200 degree C

The isothermal oxidation behaviour of Cr2AlC-MAX phase (ternary alloy with general formula Mn+1AXn: M=early transition metal, A=A-group element, mostly IIIA or IVA, X=C or N, n=1-3) films on alumina substrates was investigated at temperatures between 700 and 1200 degree C for hold times of 1 to 30 h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface engineering 2015-04, Vol.31 (5), p.373-385
Hauptverfasser: Berger, O, Boucher, R, Ruhnow, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The isothermal oxidation behaviour of Cr2AlC-MAX phase (ternary alloy with general formula Mn+1AXn: M=early transition metal, A=A-group element, mostly IIIA or IVA, X=C or N, n=1-3) films on alumina substrates was investigated at temperatures between 700 and 1200 degree C for hold times of 1 to 30 h. The influence of the annealing temperature and time on the structure, surface morphology and microstructure evolution was studied. It was found that two processes occur simultaneously in these layers. These are the transformation of the disordered solid solution (Cr,Al)2Cx to the ordered Cr2AlC-MAX phase and the oxidation of the MAX phase. In this work, a detailed discussion of these processes is given. Moreover, a schematic model of the associated structural and chemical changes in the annealed Cr2AlC layers based on the X-ray diffraction (XRD), Energy Dispersive X-ray (EDX), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and magnetic results was developed.
ISSN:0267-0844
1743-2944
DOI:10.1179/1743294414Y.0000000417