Mean field theory for biology inspired duplication-divergence network model
The duplication-divergence network model is generally thought to incorporate key ingredients underlying the growth and evolution of protein-protein interaction networks. Properties of the model have been elucidated through numerous simulation studies. However, a comprehensive theoretical study of th...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2015-08, Vol.25 (8), p.083106-083106 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The duplication-divergence network model is generally thought to incorporate key ingredients underlying the growth and evolution of protein-protein interaction networks. Properties of the model have been elucidated through numerous simulation studies. However, a comprehensive theoretical study of the model is lacking. Here, we derived analytic expressions for quantities describing key characteristics of the network-the average degree, the degree distribution, the clustering coefficient, and the neighbor connectivity-in the mean-field, large-N limit of an extended version of the model, duplication-divergence complemented with heterodimerization and addition. We carried out extensive simulations and verified excellent agreement between simulation and theory except for one partial case. All four quantities obeyed power-laws even at moderate network size ( N∼10(4)), except the degree distribution, which had an additional exponential factor observed to obey power-law. It is shown that our network model can lead to the emergence of scale-free property and hierarchical modularity simultaneously, reproducing the important topological properties of real protein-protein interaction networks. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/1.4928212 |