The Mechanism of Inhibition of Topoisomerase IV by Quinolone Antibacterials

Topoisomerase IV (Topo IV) is a mediator of quinolone toxicity in bacteria. In this work, we demonstrate that norfloxacin, a model quinolone, converts Escherichia coliTopo IV into a poisonous adduct on DNA as opposed to inhibiting topoisomerase activity. Norfloxacin inhibition of Topo IV induces a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-10, Vol.273 (42), p.27668-27677
Hauptverfasser: Khodursky, Arkady B., Cozzarelli, Nicholas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topoisomerase IV (Topo IV) is a mediator of quinolone toxicity in bacteria. In this work, we demonstrate that norfloxacin, a model quinolone, converts Escherichia coliTopo IV into a poisonous adduct on DNA as opposed to inhibiting topoisomerase activity. Norfloxacin inhibition of Topo IV induces a slow decline in DNA synthesis that parallels cell death. Treatment of cells with a lethal concentration of the antibacterial did not block chromosome segregation, the phenotype of catalytic inhibition of Topo IV. Instead, norfloxacin causes DNA damage, as evidenced by the induction of the SOS pathway for DNA repair; the increase in susceptibility to the drug by mutations in genes for DNA repair pathways including recA, recB, and uvrD; and the efficient detergent-induced linearization of plasmid DNA in drug-treated cells. Wild-type and drug-resistant alleles of Topo IV are co-dominant, but we find that mutations in recA, seqA, or gyrB result in unconditional dominance of the sensitive allele, the characteristic of a poisoning mode of inhibition. These mutations either compromise chromosome integrity or force Topo IV to play a more active role in DNA unlinking in front of the replication fork. We interpret our results in terms of distinct but complementary roles of Topo IV and gyrase in DNA replication.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.42.27668