Mitral valve analysis using a novel 3D holographic display: a feasibility study of 3D ultrasound data converted to a holographic screen
The aim of the present study was to test the feasibility of analyzing 3D ultrasound data on a novel holographic display. An increasing number of mini-invasive procedures for mitral valve repair require more effective visualization to improve patient safety and speed of procedures. A novel 3D hologra...
Gespeichert in:
Veröffentlicht in: | International Journal of Cardiovascular Imaging 2015-02, Vol.31 (2), p.323-328 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of the present study was to test the feasibility of analyzing 3D ultrasound data on a novel holographic display. An increasing number of mini-invasive procedures for mitral valve repair require more effective visualization to improve patient safety and speed of procedures. A novel 3D holographic display has been developed and may have the potential to guide interventional cardiac procedures in the near future. Forty patients with degenerative mitral valve disease were analyzed. All had complete 2D transthoracic (TTE) and transoesophageal (TEE) echocardiographic examinations. In addition, 3D TTE of the mitral valve was obtained and recordings were converted from the echo machine to the holographic screen. Visual inspection of the mitral valve during surgery or TEE served as the gold standard. 240 segments were analyzed by 2 independent observers. A total of 53 segments were prolapsing. The majority included P2 (31), the remaining located at A2 (8), A3 (6), P3 (5), P1 (2) and A1 (1). The sensitivity and specificity of the 3D display was 87 and 99 %, respectively (observer I), and for observer II 85 and 97 %, respectively. The accuracies and precisions were 96.7 and 97.9 %, respectively, (observer I), 94.3 and 88.2 % (observer II), and inter-observer agreement was 0.954 with Cohen’s Kappa 0.86. We were able to convert 3D ultrasound data to the holographic display. A very high accuracy and precision was shown, demonstrating the feasibility of analyzing 3D echo of the mitral valve on the holographic screen. |
---|---|
ISSN: | 1569-5794 1573-0743 1875-8312 |
DOI: | 10.1007/s10554-014-0564-z |