Amplified Feedback Mechanism of the Forests-Aerosols-Climate System

Climate change very likely has effects on vegetation so that trees grow faster due to carbon dioxide fertilization (a higher partial pressure increases the rate of reactions with Rubisco during photosynthesis) and that trees can be established in new territories in a warmer climate. This has far-rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Climatology 2015-01, Vol.2015, p.1-11
Hauptverfasser: Hede, Thomas, Leck, Caroline, Claesson, Jonas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change very likely has effects on vegetation so that trees grow faster due to carbon dioxide fertilization (a higher partial pressure increases the rate of reactions with Rubisco during photosynthesis) and that trees can be established in new territories in a warmer climate. This has far-reaching significance for the climate system mainly due to a number of feedback mechanisms still under debate. By simulating the vegetation using the Lund-Potsdam-Jena guess dynamic vegetation model, a territory in northern Russia is studied during three different climate protocols assuming a doubling of carbon dioxide levels compared to the year 1975. A back of the envelope calculation is made for the subsequent increased levels of emissions of monoterpenes from spruce and pine forests. The results show that the emissions of monoterpenes at the most northern latitudes were estimated to increase with over 500% for a four-degree centigrade increase protocol. The effect on aerosol and cloud formation is discussed and the cloud optical thickness is estimated to increase more than 2%.
ISSN:2356-6361
2314-6214
DOI:10.1155/2015/262980