Nitric oxide (NO) protects against cellular damage by reactive oxygen species
Since the discovery of nitric oxide (NO) as an endogenously formed radical, its effect on numerous physiological processes has been intensively investigated. Some studies have suggested NO to be cytotoxic while others have demonstrated it protective under various biological conditions. Though NO sho...
Gespeichert in:
Veröffentlicht in: | Toxicology letters 1995-12, Vol.82, p.221-226 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the discovery of nitric oxide (NO) as an endogenously formed radical, its effect on numerous physiological processes has been intensively investigated. Some studies have suggested NO to be cytotoxic while others have demonstrated it protective under various biological conditions. Though NO shows minimal cytotoxicity to a variety mammalian cell cultures, it does modulate the toxicity of some agents such as reactive oxygen species. Often, NO is generated in the presence of these reactive oxygen species in response to foreign pathogens or under various pathophysiological conditions. We will show that NO can play a protective role under oxidative stress resulting from Superoxide, hydrogen peroxide and alkyl peroxides. It was found by measuring the time-concentration profiles of NO released from various NO donor compounds that only μM levels of NO were required for protection against the toxicity of these reactive species. It was found that there are several chemical reactions which may account for these protective effects such as NO preventing heme oxidation, inhibition of Fenton-type oxidation of DNA, and abatement of lipid peroxidation. Taken together, NO at low concentrations clearly protects against peroxidemediated toxicity. |
---|---|
ISSN: | 0378-4274 1879-3169 |
DOI: | 10.1016/0378-4274(95)03557-5 |