Enterococcus faecalis Inhibits Osteoblast Differentiation and Induces Chemokine Expression
Abstract Introduction Enterococcus faecalis is commonly found in root canals of patients with refractory apical periodontitis, often accompanying inflammation and malfunctioning bone regeneration. In this study, we investigated the effect of E. faecalis on osteoblast differentiation and the ability...
Gespeichert in:
Veröffentlicht in: | Journal of endodontics 2015-09, Vol.41 (9), p.1480-1485 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1485 |
---|---|
container_issue | 9 |
container_start_page | 1480 |
container_title | Journal of endodontics |
container_volume | 41 |
creator | Park, Ok-Jin, PhD Kim, Jiseon, MS Yang, Jihyun, PhD Yun, Cheol-Heui, PhD Han, Seung Hyun, PhD |
description | Abstract Introduction Enterococcus faecalis is commonly found in root canals of patients with refractory apical periodontitis, often accompanying inflammation and malfunctioning bone regeneration. In this study, we investigated the effect of E. faecalis on osteoblast differentiation and the ability to induce chemokine expression to recruit inflammatory cells. Methods Osteoblast precursors from mouse calvaria were differentiated into osteoblasts with ascorbic acid and β-glycerophosphate in the absence or presence of heat-killed E. faecalis (HKEF). Alizarin red S staining was performed to determine the degree of mineralization. Reporter gene and reverse-transcription polymerase chain reaction assays were performed to examine the activity of the Runx2 transcription factor and the expression of osteogenic marker genes, respectively. Secretion of the chemokines keratinocyte-derived chemokine and monocyte chemotactic protein-1 was measured by the enzyme-linked immunosorbent assay, and their functions were analyzed by measuring the migration of peripheral blood mononuclear cells using a transwell system. Results HKEF inhibited osteoblast mineralization and Runx2 transcriptional activity, which are typical features of osteoblast differentiation. HKEF also decreased the expression of Runx2, osterix, β-catenin, osteocalcin, and type I collagen. Interestingly, however, the expression of keratinocyte-derived chemokine and monocyte chemotactic protein-1 was increased by HKEF, and the culture supernatant of HKEF-stimulated osteoblasts increased the transmigration of peripheral blood mononuclear cells. Conclusions HKEF inhibits osteoblast differentiation and induces chemokine expression, which might be involved in refractory apical periodontitis and bone loss. |
doi_str_mv | 10.1016/j.joen.2015.04.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1708897264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0099239915004458</els_id><sourcerecordid>1708897264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-86a54d4e503508a51773675d7a84b6b09289b78ffafc9a033ea5d16af3d45dab3</originalsourceid><addsrcrecordid>eNp9kbGO1DAURS0EYoeFH6BAKWkS7NiOHQkhoWGAlVbaAmhoLMd-0TqbsQc_B7F_T6JZKCioXnPuld65hLxktGGUdW-mZkoQm5Yy2VDR0FY-Ijumla65lOIx2VHa93XL-_6CPEOcKGWKc_WUXLQdE0x1eke-H2KBnFxybsFqtODsHLC6irdhCAWrGyyQhtliqT6EcYQMsQRbQoqVjX7l_OIAq_0tHNNdiFAdfp0yIK7Ac_JktDPCi4d7Sb59PHzdf66vbz5d7d9f105oVmrdWSm8AEm5pNpKphTvlPTKajF0A-1b3Q9Kj6MdXW8p52ClZ50duRfS24Ffktfn3lNOPxbAYo4BHcyzjZAWNExRrXvVdmJF2zPqckLMMJpTDkeb7w2jZnNqJrM5NZtTQ4VZna6hVw_9y3AE_zfyR-IKvD0DsH75M0A26AJEBz5kcMX4FP7f_-6fuJtDDOsQd3APOKUlx9WfYQZbQ82XbdVtVCYpFUJq_htgw53_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1708897264</pqid></control><display><type>article</type><title>Enterococcus faecalis Inhibits Osteoblast Differentiation and Induces Chemokine Expression</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Park, Ok-Jin, PhD ; Kim, Jiseon, MS ; Yang, Jihyun, PhD ; Yun, Cheol-Heui, PhD ; Han, Seung Hyun, PhD</creator><creatorcontrib>Park, Ok-Jin, PhD ; Kim, Jiseon, MS ; Yang, Jihyun, PhD ; Yun, Cheol-Heui, PhD ; Han, Seung Hyun, PhD</creatorcontrib><description>Abstract Introduction Enterococcus faecalis is commonly found in root canals of patients with refractory apical periodontitis, often accompanying inflammation and malfunctioning bone regeneration. In this study, we investigated the effect of E. faecalis on osteoblast differentiation and the ability to induce chemokine expression to recruit inflammatory cells. Methods Osteoblast precursors from mouse calvaria were differentiated into osteoblasts with ascorbic acid and β-glycerophosphate in the absence or presence of heat-killed E. faecalis (HKEF). Alizarin red S staining was performed to determine the degree of mineralization. Reporter gene and reverse-transcription polymerase chain reaction assays were performed to examine the activity of the Runx2 transcription factor and the expression of osteogenic marker genes, respectively. Secretion of the chemokines keratinocyte-derived chemokine and monocyte chemotactic protein-1 was measured by the enzyme-linked immunosorbent assay, and their functions were analyzed by measuring the migration of peripheral blood mononuclear cells using a transwell system. Results HKEF inhibited osteoblast mineralization and Runx2 transcriptional activity, which are typical features of osteoblast differentiation. HKEF also decreased the expression of Runx2, osterix, β-catenin, osteocalcin, and type I collagen. Interestingly, however, the expression of keratinocyte-derived chemokine and monocyte chemotactic protein-1 was increased by HKEF, and the culture supernatant of HKEF-stimulated osteoblasts increased the transmigration of peripheral blood mononuclear cells. Conclusions HKEF inhibits osteoblast differentiation and induces chemokine expression, which might be involved in refractory apical periodontitis and bone loss.</description><identifier>ISSN: 0099-2399</identifier><identifier>EISSN: 1878-3554</identifier><identifier>DOI: 10.1016/j.joen.2015.04.025</identifier><identifier>PMID: 26141768</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Differentiation ; Chemokine ; Chemokines - biosynthesis ; Core Binding Factor Alpha 1 Subunit - genetics ; Core Binding Factor Alpha 1 Subunit - metabolism ; Dental Pulp Cavity - cytology ; Dental Pulp Cavity - microbiology ; Dentistry ; Endocrinology & Metabolism ; Enterococcus faecalis ; Enterococcus faecalis - physiology ; Mice ; Mice, Inbred C57BL ; osteoblast ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteoblasts - microbiology ; Periapical Periodontitis - microbiology ; refractory apical periodontitis ; Runx2 ; Transcription, Genetic</subject><ispartof>Journal of endodontics, 2015-09, Vol.41 (9), p.1480-1485</ispartof><rights>American Association of Endodontists</rights><rights>2015 American Association of Endodontists</rights><rights>Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-86a54d4e503508a51773675d7a84b6b09289b78ffafc9a033ea5d16af3d45dab3</citedby><cites>FETCH-LOGICAL-c481t-86a54d4e503508a51773675d7a84b6b09289b78ffafc9a033ea5d16af3d45dab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.joen.2015.04.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26141768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Ok-Jin, PhD</creatorcontrib><creatorcontrib>Kim, Jiseon, MS</creatorcontrib><creatorcontrib>Yang, Jihyun, PhD</creatorcontrib><creatorcontrib>Yun, Cheol-Heui, PhD</creatorcontrib><creatorcontrib>Han, Seung Hyun, PhD</creatorcontrib><title>Enterococcus faecalis Inhibits Osteoblast Differentiation and Induces Chemokine Expression</title><title>Journal of endodontics</title><addtitle>J Endod</addtitle><description>Abstract Introduction Enterococcus faecalis is commonly found in root canals of patients with refractory apical periodontitis, often accompanying inflammation and malfunctioning bone regeneration. In this study, we investigated the effect of E. faecalis on osteoblast differentiation and the ability to induce chemokine expression to recruit inflammatory cells. Methods Osteoblast precursors from mouse calvaria were differentiated into osteoblasts with ascorbic acid and β-glycerophosphate in the absence or presence of heat-killed E. faecalis (HKEF). Alizarin red S staining was performed to determine the degree of mineralization. Reporter gene and reverse-transcription polymerase chain reaction assays were performed to examine the activity of the Runx2 transcription factor and the expression of osteogenic marker genes, respectively. Secretion of the chemokines keratinocyte-derived chemokine and monocyte chemotactic protein-1 was measured by the enzyme-linked immunosorbent assay, and their functions were analyzed by measuring the migration of peripheral blood mononuclear cells using a transwell system. Results HKEF inhibited osteoblast mineralization and Runx2 transcriptional activity, which are typical features of osteoblast differentiation. HKEF also decreased the expression of Runx2, osterix, β-catenin, osteocalcin, and type I collagen. Interestingly, however, the expression of keratinocyte-derived chemokine and monocyte chemotactic protein-1 was increased by HKEF, and the culture supernatant of HKEF-stimulated osteoblasts increased the transmigration of peripheral blood mononuclear cells. Conclusions HKEF inhibits osteoblast differentiation and induces chemokine expression, which might be involved in refractory apical periodontitis and bone loss.</description><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Chemokine</subject><subject>Chemokines - biosynthesis</subject><subject>Core Binding Factor Alpha 1 Subunit - genetics</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Dental Pulp Cavity - cytology</subject><subject>Dental Pulp Cavity - microbiology</subject><subject>Dentistry</subject><subject>Endocrinology & Metabolism</subject><subject>Enterococcus faecalis</subject><subject>Enterococcus faecalis - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>osteoblast</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - microbiology</subject><subject>Periapical Periodontitis - microbiology</subject><subject>refractory apical periodontitis</subject><subject>Runx2</subject><subject>Transcription, Genetic</subject><issn>0099-2399</issn><issn>1878-3554</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kbGO1DAURS0EYoeFH6BAKWkS7NiOHQkhoWGAlVbaAmhoLMd-0TqbsQc_B7F_T6JZKCioXnPuld65hLxktGGUdW-mZkoQm5Yy2VDR0FY-Ijumla65lOIx2VHa93XL-_6CPEOcKGWKc_WUXLQdE0x1eke-H2KBnFxybsFqtODsHLC6irdhCAWrGyyQhtliqT6EcYQMsQRbQoqVjX7l_OIAq_0tHNNdiFAdfp0yIK7Ac_JktDPCi4d7Sb59PHzdf66vbz5d7d9f105oVmrdWSm8AEm5pNpKphTvlPTKajF0A-1b3Q9Kj6MdXW8p52ClZ50duRfS24Ffktfn3lNOPxbAYo4BHcyzjZAWNExRrXvVdmJF2zPqckLMMJpTDkeb7w2jZnNqJrM5NZtTQ4VZna6hVw_9y3AE_zfyR-IKvD0DsH75M0A26AJEBz5kcMX4FP7f_-6fuJtDDOsQd3APOKUlx9WfYQZbQ82XbdVtVCYpFUJq_htgw53_</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Park, Ok-Jin, PhD</creator><creator>Kim, Jiseon, MS</creator><creator>Yang, Jihyun, PhD</creator><creator>Yun, Cheol-Heui, PhD</creator><creator>Han, Seung Hyun, PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150901</creationdate><title>Enterococcus faecalis Inhibits Osteoblast Differentiation and Induces Chemokine Expression</title><author>Park, Ok-Jin, PhD ; Kim, Jiseon, MS ; Yang, Jihyun, PhD ; Yun, Cheol-Heui, PhD ; Han, Seung Hyun, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-86a54d4e503508a51773675d7a84b6b09289b78ffafc9a033ea5d16af3d45dab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Chemokine</topic><topic>Chemokines - biosynthesis</topic><topic>Core Binding Factor Alpha 1 Subunit - genetics</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Dental Pulp Cavity - cytology</topic><topic>Dental Pulp Cavity - microbiology</topic><topic>Dentistry</topic><topic>Endocrinology & Metabolism</topic><topic>Enterococcus faecalis</topic><topic>Enterococcus faecalis - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>osteoblast</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - microbiology</topic><topic>Periapical Periodontitis - microbiology</topic><topic>refractory apical periodontitis</topic><topic>Runx2</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Ok-Jin, PhD</creatorcontrib><creatorcontrib>Kim, Jiseon, MS</creatorcontrib><creatorcontrib>Yang, Jihyun, PhD</creatorcontrib><creatorcontrib>Yun, Cheol-Heui, PhD</creatorcontrib><creatorcontrib>Han, Seung Hyun, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of endodontics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Ok-Jin, PhD</au><au>Kim, Jiseon, MS</au><au>Yang, Jihyun, PhD</au><au>Yun, Cheol-Heui, PhD</au><au>Han, Seung Hyun, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enterococcus faecalis Inhibits Osteoblast Differentiation and Induces Chemokine Expression</atitle><jtitle>Journal of endodontics</jtitle><addtitle>J Endod</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>41</volume><issue>9</issue><spage>1480</spage><epage>1485</epage><pages>1480-1485</pages><issn>0099-2399</issn><eissn>1878-3554</eissn><abstract>Abstract Introduction Enterococcus faecalis is commonly found in root canals of patients with refractory apical periodontitis, often accompanying inflammation and malfunctioning bone regeneration. In this study, we investigated the effect of E. faecalis on osteoblast differentiation and the ability to induce chemokine expression to recruit inflammatory cells. Methods Osteoblast precursors from mouse calvaria were differentiated into osteoblasts with ascorbic acid and β-glycerophosphate in the absence or presence of heat-killed E. faecalis (HKEF). Alizarin red S staining was performed to determine the degree of mineralization. Reporter gene and reverse-transcription polymerase chain reaction assays were performed to examine the activity of the Runx2 transcription factor and the expression of osteogenic marker genes, respectively. Secretion of the chemokines keratinocyte-derived chemokine and monocyte chemotactic protein-1 was measured by the enzyme-linked immunosorbent assay, and their functions were analyzed by measuring the migration of peripheral blood mononuclear cells using a transwell system. Results HKEF inhibited osteoblast mineralization and Runx2 transcriptional activity, which are typical features of osteoblast differentiation. HKEF also decreased the expression of Runx2, osterix, β-catenin, osteocalcin, and type I collagen. Interestingly, however, the expression of keratinocyte-derived chemokine and monocyte chemotactic protein-1 was increased by HKEF, and the culture supernatant of HKEF-stimulated osteoblasts increased the transmigration of peripheral blood mononuclear cells. Conclusions HKEF inhibits osteoblast differentiation and induces chemokine expression, which might be involved in refractory apical periodontitis and bone loss.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26141768</pmid><doi>10.1016/j.joen.2015.04.025</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2399 |
ispartof | Journal of endodontics, 2015-09, Vol.41 (9), p.1480-1485 |
issn | 0099-2399 1878-3554 |
language | eng |
recordid | cdi_proquest_miscellaneous_1708897264 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Cell Differentiation Chemokine Chemokines - biosynthesis Core Binding Factor Alpha 1 Subunit - genetics Core Binding Factor Alpha 1 Subunit - metabolism Dental Pulp Cavity - cytology Dental Pulp Cavity - microbiology Dentistry Endocrinology & Metabolism Enterococcus faecalis Enterococcus faecalis - physiology Mice Mice, Inbred C57BL osteoblast Osteoblasts - cytology Osteoblasts - metabolism Osteoblasts - microbiology Periapical Periodontitis - microbiology refractory apical periodontitis Runx2 Transcription, Genetic |
title | Enterococcus faecalis Inhibits Osteoblast Differentiation and Induces Chemokine Expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enterococcus%20faecalis%20Inhibits%20Osteoblast%20Differentiation%20and%20Induces%20Chemokine%20Expression&rft.jtitle=Journal%20of%20endodontics&rft.au=Park,%20Ok-Jin,%20PhD&rft.date=2015-09-01&rft.volume=41&rft.issue=9&rft.spage=1480&rft.epage=1485&rft.pages=1480-1485&rft.issn=0099-2399&rft.eissn=1878-3554&rft_id=info:doi/10.1016/j.joen.2015.04.025&rft_dat=%3Cproquest_cross%3E1708897264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1708897264&rft_id=info:pmid/26141768&rft_els_id=S0099239915004458&rfr_iscdi=true |