Enterococcus faecalis Inhibits Osteoblast Differentiation and Induces Chemokine Expression

Abstract Introduction Enterococcus faecalis is commonly found in root canals of patients with refractory apical periodontitis, often accompanying inflammation and malfunctioning bone regeneration. In this study, we investigated the effect of E. faecalis on osteoblast differentiation and the ability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of endodontics 2015-09, Vol.41 (9), p.1480-1485
Hauptverfasser: Park, Ok-Jin, PhD, Kim, Jiseon, MS, Yang, Jihyun, PhD, Yun, Cheol-Heui, PhD, Han, Seung Hyun, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Introduction Enterococcus faecalis is commonly found in root canals of patients with refractory apical periodontitis, often accompanying inflammation and malfunctioning bone regeneration. In this study, we investigated the effect of E. faecalis on osteoblast differentiation and the ability to induce chemokine expression to recruit inflammatory cells. Methods Osteoblast precursors from mouse calvaria were differentiated into osteoblasts with ascorbic acid and β-glycerophosphate in the absence or presence of heat-killed E. faecalis (HKEF). Alizarin red S staining was performed to determine the degree of mineralization. Reporter gene and reverse-transcription polymerase chain reaction assays were performed to examine the activity of the Runx2 transcription factor and the expression of osteogenic marker genes, respectively. Secretion of the chemokines keratinocyte-derived chemokine and monocyte chemotactic protein-1 was measured by the enzyme-linked immunosorbent assay, and their functions were analyzed by measuring the migration of peripheral blood mononuclear cells using a transwell system. Results HKEF inhibited osteoblast mineralization and Runx2 transcriptional activity, which are typical features of osteoblast differentiation. HKEF also decreased the expression of Runx2, osterix, β-catenin, osteocalcin, and type I collagen. Interestingly, however, the expression of keratinocyte-derived chemokine and monocyte chemotactic protein-1 was increased by HKEF, and the culture supernatant of HKEF-stimulated osteoblasts increased the transmigration of peripheral blood mononuclear cells. Conclusions HKEF inhibits osteoblast differentiation and induces chemokine expression, which might be involved in refractory apical periodontitis and bone loss.
ISSN:0099-2399
1878-3554
DOI:10.1016/j.joen.2015.04.025