Crystal Structures of Protein Phosphatase-1 Bound to Motuporin and Dihydromicrocystin-LA: Elucidation of the Mechanism of Enzyme Inhibition by Cyanobacterial Toxins

The microcystins and nodularins are tumour promoting hepatotoxins that are responsible for global adverse human health effects and wildlife fatalities in countries where drinking water supplies contain cyanobacteria. The toxins function by inhibiting broad specificity Ser/Thr protein phosphatases in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2006-02, Vol.356 (1), p.111-120
Hauptverfasser: Maynes, Jason T., Luu, Hue A., Cherney, Maia M., Andersen, Raymond J., Williams, David, Holmes, Charles F.B., James, Michael N.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microcystins and nodularins are tumour promoting hepatotoxins that are responsible for global adverse human health effects and wildlife fatalities in countries where drinking water supplies contain cyanobacteria. The toxins function by inhibiting broad specificity Ser/Thr protein phosphatases in the host cells, thereby disrupting signal transduction pathways. A previous crystal structure of a microcystin bound to the catalytic subunit of protein phosphatase-1 (PP-1c) showed distinct changes in the active site region when compared with protein phosphatase-1 structures bound to other toxins. We have elucidated the crystal structures of the cyanotoxins, motuporin (nodularin-V) and dihydromicrocystin-LA bound to human protein phosphatase-1c (γ isoform). The atomic structures of these complexes reveal the structural basis for inhibition of protein phosphatases by these toxins. Comparisons of the structures of the cyanobacterial toxin:phosphatase complexes explain the biochemical mechanism by which microcystins but not nodularins permanently modify their protein phosphatase targets by covalent addition to an active site cysteine residue.
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2005.11.019