Inhibition of the VEGF signalling pathway and glomerular disorders
Anti-cancer therapeutic approaches targeting the vascular endothelial growth factor (VEGF) ligand (anti-VEGF) or inhibiting its receptors (RTKI) have recently been developed. In spite of the promising results achieved, a serious drawback and dose-limiting side effect is the development, among others...
Gespeichert in:
Veröffentlicht in: | Nephrology, dialysis, transplantation dialysis, transplantation, 2015-09, Vol.30 (9), p.1449-1455 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anti-cancer therapeutic approaches targeting the vascular endothelial growth factor (VEGF) ligand (anti-VEGF) or inhibiting its receptors (RTKI) have recently been developed. In spite of the promising results achieved, a serious drawback and dose-limiting side effect is the development, among others, of renal complications. This encompasses two glomerular pathological entities, namely minimal change/focal segmental glomerulosclerosis and thrombotic micro-angiopathy, involving two distinct cell types, podocytes and endothelial cells, respectively. The mechanisms that link anti-cancer therapy by RTKI to podocyte dysfunction and nephrotic level proteinuria are still poorly understood. Nevertheless, recent findings strongly suggest a central role of RelA, the master subunit of NF-κB and c-mip, an active player in podocyte disorders. RelA, which is up-regulated following anti-VEGF therapy, is inactivated by RTKI, leading to c-mip over-expression in the podocyte. This results in severe alterations in the architecture of podocyte actin cytoskeleton and subsequent severe proteinuria. Hence, clarifying the mechanisms linking c-mip and RelA as key pathogenic factors represents a critical goal in the understanding of different glomerulopathies. In the context of VEGF-targeted anti-cancer therapy, the study of these mechanisms along with the molecular cross-talk between podocyte and endothelial cell constitutes the basis for the emerging field of onconephrology. |
---|---|
ISSN: | 0931-0509 1460-2385 |
DOI: | 10.1093/ndt/gfu368 |