Searching for Intermediates in the Carbon Skeleton Rearrangement of 2-Methyleneglutarate to (R)-3-Methylitaconate Catalyzed by Coenzyme B sub(12)-Dependent 2-Methyleneglutarate Mutase from Eubacterium barkeri

Coenzyme B sub(12)-dependent 2-methyleneglutarate mutase from the strict anaerobe Eubacterium barkeri catalyzes the equilibration of 2-methyleneglutarate with (R)-3-methylitaconate. Proteins with mutations in the highly conserved coenzyme binding-motif DXH(X) sub(2) G(X) sub(41) GG (D483N and H485Q)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2005-08, Vol.44 (31), p.10541-10551
Hauptverfasser: Pierik, A J, Ciceri, D, Lopez, R F, Kroll, F, Broeker, G, Beatrix, B, Buckel, W, Golding, B T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coenzyme B sub(12)-dependent 2-methyleneglutarate mutase from the strict anaerobe Eubacterium barkeri catalyzes the equilibration of 2-methyleneglutarate with (R)-3-methylitaconate. Proteins with mutations in the highly conserved coenzyme binding-motif DXH(X) sub(2) G(X) sub(41) GG (D483N and H485Q) exhibited decreased substrate turnover by 2000-fold and >4000-fold, respectively. These findings are consistent with the notion of H485 hydrogen-bonded to D483 being the lower axial ligand of adenosylcobalamin in 2-methyleneglutarate mutase. (E)- and (Z)-2-methylpent-2-enedioate and all four stereoisomers of 1-methylcyclopropane-1,2-dicarboxylate were synthesized and tested, along with acrylate, with respect to their inhibitory potential. Acrylate and the 2-methylpent-2-enedioates were noninhibitory. Among the 1-methylcyclopropane-1,2-dicarboxylates only the (1R,2R)-isomer displayed weak inhibition (noncompetitive, K sub(i) = 13 mM). Short incubation (5 min) of 2-methyleneglutarate mutase with 2-methyleneglutarate under anaerobic conditions generated an electron paramagnetic resonance (EPR) signal (g sub(xy) approximately 2.1; g sub(z) approximately 2.0), which by analogy with the findings on glutamate mutase from Clostridium cochlearium was assigned to cob(II)alamin coupled to a carbon-centered radical. At longer incubation times (>1 h), inactivation of the mutase occurred concomitant with the formation of oxygen-insensitive cob(II)alamin (g sub(xy) approximately 2.25; g sub(z) approximately 2.0). In order to identify the carbon-centered radical, various super(13C)- and one super(2)H-labeled substrate/product molecules were synthesized. Broadening (0.5 mT) of the EPR signal around g = 2.1 was observed only when C2 and/or C4 of 2-methyleneglutarate was labeled. No effect on the EPR signals was seen when [5'- super(13C)]adenosylcobalamin was used as coenzyme. The inhibition and EPR data are discussed in the context of the addition-elimination and fragmentation-recombination mechanisms proposed for 2-methyleneglutarate mutase.
ISSN:0006-2960
DOI:10.1021/bi050049n