K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons

The selective degeneration of dopaminergic (DA) midbrain neurons in the substantia nigra (SN) is a hallmark of Parkinson disease. DA neurons in the neighboring ventral tegmental area (VTA) are significantly less affected. The mechanisms for this differential vulnerability of DA neurons are unknown....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2005-12, Vol.8 (12), p.1742-1751
Hauptverfasser: Liss, Birgit, Haeckel, Olga, Wildmann, Johannes, Miki, Takashi, Seino, Susumu, Roeper, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The selective degeneration of dopaminergic (DA) midbrain neurons in the substantia nigra (SN) is a hallmark of Parkinson disease. DA neurons in the neighboring ventral tegmental area (VTA) are significantly less affected. The mechanisms for this differential vulnerability of DA neurons are unknown. We identified selective activation of ATP-sensitive potassium (K-ATP) channels as a potential mechanism. We show that in response to parkinsonism-inducing toxins, electrophysiological activity of SN DA neurons, but not VTA DA neurons, is lost owing to activation of K-ATP channels. This selective K-ATP channel activation is controlled by differences in mitochondrial uncoupling between SN and VTA DA neurons. Genetic inactivation of the K-ATP channel pore-forming subunit Kir6.2 resulted in a selective rescue of SN but not VTA DA neurons in two mechanistically distinct mouse models of dopaminergic degeneration, the neurotoxicological 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model and the mutant weaver mouse. Thus, K-ATP channel activation has an unexpected role in promoting death of DA neurons in chronic disease.
ISSN:1097-6256
1546-1726
DOI:10.1038/nn1570