UPLC-ESI-Q-TOF-MS(E) and GC-MS identification and quantification of non-intentionally added substances coming from biodegradable food packaging

Biodegradable packagings are made by combination of several materials creating a multilayer with the properties needed. Each material, including the adhesive, could contain substances that could migrate to the food. In this work, gas chromatography coupled with mass spectrometry and ultra-high-press...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2015-09, Vol.407 (22), p.6781-6790
Hauptverfasser: Canellas, Elena, Vera, Paula, Nerín, Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biodegradable packagings are made by combination of several materials creating a multilayer with the properties needed. Each material, including the adhesive, could contain substances that could migrate to the food. In this work, gas chromatography coupled with mass spectrometry and ultra-high-pressure liquid chromatography coupled with quadrupole time-of-flight mass spectrometry were used to identify the biodegradable adhesive compounds. Five of the 13 compounds identified were nonintentionally added substances; they were neoformed compounds created by the reaction of added compounds in the adhesive. Moreover, the migration of the compounds through four different biodegradable materials-paper, polylactic acid, ecovio®, and polyvinyl alcohol-was studied for the first time. Three of the 13 compounds identified in the adhesive migrated from the adhesive to Tenax®, which was used as a solid food simulant. One of them, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, was an intentionally added substance, and the other two were 1,6-dioxacyclododecane-7,12-dione and 1,6,13,18-tetraoxacyclotetracosane-7,12,19,24-tetraone, which were nonintentionally added substances identified in this work. Higher migration values (ranging from 0.81 to 2.07 mg/kg) were observed for migration through ecovio® than through the multilayer made by combination of ecovio® and polyvinyl alcohol (0.07-0.39 mg/kg) owing to the barrier effect provided by polyvinyl alcohol. The migration values for migration through paper and polylactic acid were below the limits of detection.
ISSN:1618-2650
DOI:10.1007/s00216-015-8848-2