Optically Excited Entangled States in Organic Molecules Illuminate the Dark

We utilize quantum entangled photons to carry out nonlinear optical spectroscopy in organic molecules with an extremely small number of photons. For the first time, fluorescence is reported as a result of entangled photon absorption in organic nonlinear optical molecules. Selectivity of the entangle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2013-06, Vol.4 (12), p.2046-2052
Hauptverfasser: Upton, L, Harpham, M, Suzer, O, Richter, M, Mukamel, S, Goodson, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We utilize quantum entangled photons to carry out nonlinear optical spectroscopy in organic molecules with an extremely small number of photons. For the first time, fluorescence is reported as a result of entangled photon absorption in organic nonlinear optical molecules. Selectivity of the entangled photon absorption process is also observed and a theoretical model of this process is provided. Through these experiments and theoretical modeling it is found that while some molecules may not have strong classical nonlinear optical properties due to their excitation pathways; these same excitation pathways may enhance the entangled photon processes. It is found that the opposite is also true. Some materials with weak classical nonlinear optical effects may exhibit strong non-classical nonlinear optical effects. Our entangled photon fluorescence results provide the first steps in realizing and demonstrating the viability of entangled two-photon microscopy, remote sensing, and optical communications.
ISSN:1948-7185
1948-7185
DOI:10.1021/jz400851d