Effect of point bar development on the local force balance governing flow in a simple, meandering gravel bed river
The patterns of depth, velocity, and shear stress that direct a river's morphologic evolution are governed by a balance of forces. Analyzing these forces, associated with pressure gradients, boundary friction, channel curvature, and along‐ and across‐stream changes in fluid momentum driven by b...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Earth Surface 2011-03, Vol.116 (F1), p.np-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The patterns of depth, velocity, and shear stress that direct a river's morphologic evolution are governed by a balance of forces. Analyzing these forces, associated with pressure gradients, boundary friction, channel curvature, and along‐ and across‐stream changes in fluid momentum driven by bed topography, can yield insight regarding the establishment and maintenance of stable channel forms. This study examined how components of the local force balance changed as a meandering channel evolved from a simple, flat‐bedded initial condition to a more complex bar‐pool morphology. A numerical flow model, constrained by measurements of velocity and water surface elevation, characterized the flow field for four time periods bracketing two floods. For each time increment, runs were performed for discharges up to bankfull, and individual force balance components were computed from model output. Formation and growth of point bars enhanced topographic steering effects, which were of similar magnitude to the pressure gradient and centrifugal forces. Convective accelerations induced by the bar reduced the cross‐stream pressure gradient, intensified flow toward the outer bank, and routed sediment around the upstream end of the bar. Adjustments in the flow field thus served to balance streamwise transport along the inner bank onto the bar and cross‐stream transport into the pool. Even in the early stages of bar development, topographically driven spatial gradients in velocity played a significant role in the force balance at flows up to bankfull, altering the orientation of the shear stress and sediment transport to drive bar growth. |
---|---|
ISSN: | 0148-0227 2169-9003 2156-2202 2169-9011 |
DOI: | 10.1029/2010JF001838 |