Arctic Radiative Fluxes: Present-Day Biases and Future Projections in CMIP5 Models
Radiative fluxes are critical for understanding the energy budget of the Arctic region, where the climate has been changing rapidly and is projected to continue to change. This work investigates causes of present-day biases and future projections of top-of-atmosphere (TOA) Arctic radiative fluxes in...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2015-08, Vol.28 (15), p.6019-6038 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radiative fluxes are critical for understanding the energy budget of the Arctic region, where the climate has been changing rapidly and is projected to continue to change. This work investigates causes of present-day biases and future projections of top-of-atmosphere (TOA) Arctic radiative fluxes in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Compared to Clouds and the Earth’s Radiant Energy System Energy Balanced and Filled (CERES-EBAF), CMIP5 net TOA downward shortwave (SW) flux biases are larger than outgoing longwave radiation (OLR) biases. The primary contributions to modeled TOA SW flux biases are biases in cloud amount and snow cover extent compared to the GCM-OrientedCALIPSOCloud Product (CALIPSO-GOCCP) and the newly developed Making Earth System Data Records for Use in Research Environments (MEaSUREs) dataset, respectively (with most models predicting insufficient cloud amount and snow cover in the Arctic), and biases with sea ice albedo. Future projections (2081–90) with representative concentration pathway 8.5 (RCP8.5) simulations suggest increasing net TOA downward SW fluxes (+8 W m−2) over the Arctic basin due to a decrease of surface albedo from melting snow and ice, and increasing OLR (+6 W m−2) due to an increase in surface temperatures. The largest contribution to future Arctic net TOA downward SW flux increases is declining sea ice area, followed by declining snow cover area on land, reductions to sea ice albedo, and reductions to snow albedo on land. Cloud amount is not projected to change significantly. These results suggest the importance of accurately representing both the surface area and albedos of sea ice and snow cover as well as cloud amount in order to accurately represent TOA radiative fluxes for the present-day climate and future projections. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/jcli-d-14-00801.1 |