Validation of boundary layer parameterization schemes in the weather research and forecasting model under the aspect of offshore wind energy applications- Part I: Average wind speed and wind shear

Five different planetary boundary layer (PBL) schemes in the weather research and forecasting model have been tested with respect to their capability to model boundary layer parameters relevant for offshore wind deployments. For the year 2005 model simulations based on the Yonsei University, asymmet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind energy (Chichester, England) England), 2015-05, Vol.18 (5), p.769-782
Hauptverfasser: Krogsæter, O., Reuder, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Five different planetary boundary layer (PBL) schemes in the weather research and forecasting model have been tested with respect to their capability to model boundary layer parameters relevant for offshore wind deployments. For the year 2005 model simulations based on the Yonsei University, asymmetric convection model version 2, quasi‐normal scale elimination, Mellor–Yamada–Janjic and Mellor–Yamada–Nakanishi–Niino PBL schemes with weather research and forecasting have been performed for the North Sea and validated against measurements of the Forschungsplattformen in Nord‐ und Ostsee Nr.1 platform. The investigations have been focused on the key parameters 100 m mean wind speed and wind shear expressed by the power law exponent α. All PBL‐schemes are doing well in reproducing averages and average annual statistics of the 100 m wind speed. However, two of the schemes (Yonsei University and Mellor–Yamada–Nakanishi–Niino) overestimate the wind speed above 15 m s−1 systematically. The results for the power law wind profile show a large variability between the models and the observations for different atmospheric stability conditions and also differ a lot from the industry standards. Overall, the Mellor–Yamada–Janjic scheme performs slightly better than the others and is suggested as first choice for marine atmospheric boundary layer simulations without apriori information of atmospheric stability in the region of interest. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:1095-4244
1099-1824
DOI:10.1002/we.1727