Bulk protonic conductivity in a cephalopod structural protein
Proton-conducting materials play a central role in many renewable energy and bioelectronics technologies, including fuel cells, batteries and sensors. Thus, much research effort has been expended to develop improved proton-conducting materials, such as ceramic oxides, solid acids, polymers and metal...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2014-07, Vol.6 (7), p.596-602 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 602 |
---|---|
container_issue | 7 |
container_start_page | 596 |
container_title | Nature chemistry |
container_volume | 6 |
creator | Ordinario, David D. Phan, Long Walkup IV, Ward G. Jocson, Jonah-Micah Karshalev, Emil Hüsken, Nina Gorodetsky, Alon A. |
description | Proton-conducting materials play a central role in many renewable energy and bioelectronics technologies, including fuel cells, batteries and sensors. Thus, much research effort has been expended to develop improved proton-conducting materials, such as ceramic oxides, solid acids, polymers and metal–organic frameworks. Within this context, bulk proton conductors from naturally occurring proteins have received somewhat less attention than other materials, which is surprising given the potential modularity, tunability and processability of protein-based materials. Here, we report proton conductivity for thin films composed of reflectin, a cephalopod structural protein. Bulk reflectin has a proton conductivity of ~2.6 × 10
–3
S cm
–1
at 65 °C, a proton transport activation energy of ~0.2 eV and a proton mobility of ~7 × 10
–3
cm
2
V
–1
s
–1
. These figures of merit are similar to those reported for state-of-the-art artificial proton conductors and make it possible to use reflectin in protein-based protonic transistors. Our findings may hold implications for the next generation of biocompatible proton-conducting materials and protonic devices.
Proton-conducting materials have proved useful for renewable energy applications and bioelectronics technologies. The proton conductivity of thin films made from reflectin — a cephalopod structural protein — is now reported. Reflectin's electrical properties compare favourably to those of artificial materials, and have enabled the demonstration of protein-based protonic transistors. |
doi_str_mv | 10.1038/nchem.1960 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1705066438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1539475701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-3ea904a4f8dfa7583af8bd442d97137e3cda7e488b1c49cced122740fede03fb3</originalsourceid><addsrcrecordid>eNqF0E1PwyAYB3BiNE6nFz-AaeLFaDqhQKEHD7r4lizxomdCgbrOFia0Jvv2shcXowdPkDw__k_4A3CC4AhBzK-smpp2hIoc7oADxChNCSbF7vaO4QAchjCDMKcY5ftgkJGCQpwVB-D6tm_ek7l3nbO1SpSzuldd_Vl3i6S2iUyUmU9l4-ZOJ6HzcdZ72awemNoegb1KNsEcb84heL2_exk_ppPnh6fxzSRVhMIuxUYWkEhScV1JRjmWFS81IZkuGMLMYKUlM4TzEilSKGU0yjJGYGW0gbgq8RCcr3Pj3o_ehE60dVCmaaQ1rg8CMUhhnhPM_6cUF4RRBlGkZ7_ozPXexo8IlNMcEp5lNKqLtVLeheBNJea-bqVfCATFsn-x6l8s-4_4dBPZl63RW_pdeASXaxDiyL4Z_2Pn37gv-KaPbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656048225</pqid></control><display><type>article</type><title>Bulk protonic conductivity in a cephalopod structural protein</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Ordinario, David D. ; Phan, Long ; Walkup IV, Ward G. ; Jocson, Jonah-Micah ; Karshalev, Emil ; Hüsken, Nina ; Gorodetsky, Alon A.</creator><creatorcontrib>Ordinario, David D. ; Phan, Long ; Walkup IV, Ward G. ; Jocson, Jonah-Micah ; Karshalev, Emil ; Hüsken, Nina ; Gorodetsky, Alon A.</creatorcontrib><description>Proton-conducting materials play a central role in many renewable energy and bioelectronics technologies, including fuel cells, batteries and sensors. Thus, much research effort has been expended to develop improved proton-conducting materials, such as ceramic oxides, solid acids, polymers and metal–organic frameworks. Within this context, bulk proton conductors from naturally occurring proteins have received somewhat less attention than other materials, which is surprising given the potential modularity, tunability and processability of protein-based materials. Here, we report proton conductivity for thin films composed of reflectin, a cephalopod structural protein. Bulk reflectin has a proton conductivity of ~2.6 × 10
–3
S cm
–1
at 65 °C, a proton transport activation energy of ~0.2 eV and a proton mobility of ~7 × 10
–3
cm
2
V
–1
s
–1
. These figures of merit are similar to those reported for state-of-the-art artificial proton conductors and make it possible to use reflectin in protein-based protonic transistors. Our findings may hold implications for the next generation of biocompatible proton-conducting materials and protonic devices.
Proton-conducting materials have proved useful for renewable energy applications and bioelectronics technologies. The proton conductivity of thin films made from reflectin — a cephalopod structural protein — is now reported. Reflectin's electrical properties compare favourably to those of artificial materials, and have enabled the demonstration of protein-based protonic transistors.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.1960</identifier><identifier>PMID: 24950329</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/298/54/989 ; 639/638/298/917 ; 639/638/45/612 ; Analytical Chemistry ; Animals ; Biochemistry ; Cephalopoda - chemistry ; Chemistry ; Chemistry/Food Science ; Conductivity ; Fuel cells ; Fuel technology ; Inorganic Chemistry ; Modularity ; Organic Chemistry ; Physical Chemistry ; Polymers ; Polymers - chemistry ; Proteins ; Proton Therapy ; Protons ; Renewable energy ; Sensors ; Thin films ; Transistors</subject><ispartof>Nature chemistry, 2014-07, Vol.6 (7), p.596-602</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-3ea904a4f8dfa7583af8bd442d97137e3cda7e488b1c49cced122740fede03fb3</citedby><cites>FETCH-LOGICAL-c450t-3ea904a4f8dfa7583af8bd442d97137e3cda7e488b1c49cced122740fede03fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.1960$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.1960$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24950329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ordinario, David D.</creatorcontrib><creatorcontrib>Phan, Long</creatorcontrib><creatorcontrib>Walkup IV, Ward G.</creatorcontrib><creatorcontrib>Jocson, Jonah-Micah</creatorcontrib><creatorcontrib>Karshalev, Emil</creatorcontrib><creatorcontrib>Hüsken, Nina</creatorcontrib><creatorcontrib>Gorodetsky, Alon A.</creatorcontrib><title>Bulk protonic conductivity in a cephalopod structural protein</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Proton-conducting materials play a central role in many renewable energy and bioelectronics technologies, including fuel cells, batteries and sensors. Thus, much research effort has been expended to develop improved proton-conducting materials, such as ceramic oxides, solid acids, polymers and metal–organic frameworks. Within this context, bulk proton conductors from naturally occurring proteins have received somewhat less attention than other materials, which is surprising given the potential modularity, tunability and processability of protein-based materials. Here, we report proton conductivity for thin films composed of reflectin, a cephalopod structural protein. Bulk reflectin has a proton conductivity of ~2.6 × 10
–3
S cm
–1
at 65 °C, a proton transport activation energy of ~0.2 eV and a proton mobility of ~7 × 10
–3
cm
2
V
–1
s
–1
. These figures of merit are similar to those reported for state-of-the-art artificial proton conductors and make it possible to use reflectin in protein-based protonic transistors. Our findings may hold implications for the next generation of biocompatible proton-conducting materials and protonic devices.
Proton-conducting materials have proved useful for renewable energy applications and bioelectronics technologies. The proton conductivity of thin films made from reflectin — a cephalopod structural protein — is now reported. Reflectin's electrical properties compare favourably to those of artificial materials, and have enabled the demonstration of protein-based protonic transistors.</description><subject>639/638/298/54/989</subject><subject>639/638/298/917</subject><subject>639/638/45/612</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Cephalopoda - chemistry</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Conductivity</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Inorganic Chemistry</subject><subject>Modularity</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Proteins</subject><subject>Proton Therapy</subject><subject>Protons</subject><subject>Renewable energy</subject><subject>Sensors</subject><subject>Thin films</subject><subject>Transistors</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0E1PwyAYB3BiNE6nFz-AaeLFaDqhQKEHD7r4lizxomdCgbrOFia0Jvv2shcXowdPkDw__k_4A3CC4AhBzK-smpp2hIoc7oADxChNCSbF7vaO4QAchjCDMKcY5ftgkJGCQpwVB-D6tm_ek7l3nbO1SpSzuldd_Vl3i6S2iUyUmU9l4-ZOJ6HzcdZ72awemNoegb1KNsEcb84heL2_exk_ppPnh6fxzSRVhMIuxUYWkEhScV1JRjmWFS81IZkuGMLMYKUlM4TzEilSKGU0yjJGYGW0gbgq8RCcr3Pj3o_ehE60dVCmaaQ1rg8CMUhhnhPM_6cUF4RRBlGkZ7_ozPXexo8IlNMcEp5lNKqLtVLeheBNJea-bqVfCATFsn-x6l8s-4_4dBPZl63RW_pdeASXaxDiyL4Z_2Pn37gv-KaPbA</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Ordinario, David D.</creator><creator>Phan, Long</creator><creator>Walkup IV, Ward G.</creator><creator>Jocson, Jonah-Micah</creator><creator>Karshalev, Emil</creator><creator>Hüsken, Nina</creator><creator>Gorodetsky, Alon A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20140701</creationdate><title>Bulk protonic conductivity in a cephalopod structural protein</title><author>Ordinario, David D. ; Phan, Long ; Walkup IV, Ward G. ; Jocson, Jonah-Micah ; Karshalev, Emil ; Hüsken, Nina ; Gorodetsky, Alon A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-3ea904a4f8dfa7583af8bd442d97137e3cda7e488b1c49cced122740fede03fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/638/298/54/989</topic><topic>639/638/298/917</topic><topic>639/638/45/612</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Cephalopoda - chemistry</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Conductivity</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Inorganic Chemistry</topic><topic>Modularity</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Proteins</topic><topic>Proton Therapy</topic><topic>Protons</topic><topic>Renewable energy</topic><topic>Sensors</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ordinario, David D.</creatorcontrib><creatorcontrib>Phan, Long</creatorcontrib><creatorcontrib>Walkup IV, Ward G.</creatorcontrib><creatorcontrib>Jocson, Jonah-Micah</creatorcontrib><creatorcontrib>Karshalev, Emil</creatorcontrib><creatorcontrib>Hüsken, Nina</creatorcontrib><creatorcontrib>Gorodetsky, Alon A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ordinario, David D.</au><au>Phan, Long</au><au>Walkup IV, Ward G.</au><au>Jocson, Jonah-Micah</au><au>Karshalev, Emil</au><au>Hüsken, Nina</au><au>Gorodetsky, Alon A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bulk protonic conductivity in a cephalopod structural protein</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>6</volume><issue>7</issue><spage>596</spage><epage>602</epage><pages>596-602</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Proton-conducting materials play a central role in many renewable energy and bioelectronics technologies, including fuel cells, batteries and sensors. Thus, much research effort has been expended to develop improved proton-conducting materials, such as ceramic oxides, solid acids, polymers and metal–organic frameworks. Within this context, bulk proton conductors from naturally occurring proteins have received somewhat less attention than other materials, which is surprising given the potential modularity, tunability and processability of protein-based materials. Here, we report proton conductivity for thin films composed of reflectin, a cephalopod structural protein. Bulk reflectin has a proton conductivity of ~2.6 × 10
–3
S cm
–1
at 65 °C, a proton transport activation energy of ~0.2 eV and a proton mobility of ~7 × 10
–3
cm
2
V
–1
s
–1
. These figures of merit are similar to those reported for state-of-the-art artificial proton conductors and make it possible to use reflectin in protein-based protonic transistors. Our findings may hold implications for the next generation of biocompatible proton-conducting materials and protonic devices.
Proton-conducting materials have proved useful for renewable energy applications and bioelectronics technologies. The proton conductivity of thin films made from reflectin — a cephalopod structural protein — is now reported. Reflectin's electrical properties compare favourably to those of artificial materials, and have enabled the demonstration of protein-based protonic transistors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24950329</pmid><doi>10.1038/nchem.1960</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2014-07, Vol.6 (7), p.596-602 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_1705066438 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature |
subjects | 639/638/298/54/989 639/638/298/917 639/638/45/612 Analytical Chemistry Animals Biochemistry Cephalopoda - chemistry Chemistry Chemistry/Food Science Conductivity Fuel cells Fuel technology Inorganic Chemistry Modularity Organic Chemistry Physical Chemistry Polymers Polymers - chemistry Proteins Proton Therapy Protons Renewable energy Sensors Thin films Transistors |
title | Bulk protonic conductivity in a cephalopod structural protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bulk%20protonic%20conductivity%20in%20a%20cephalopod%20structural%20protein&rft.jtitle=Nature%20chemistry&rft.au=Ordinario,%20David%20D.&rft.date=2014-07-01&rft.volume=6&rft.issue=7&rft.spage=596&rft.epage=602&rft.pages=596-602&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.1960&rft_dat=%3Cproquest_cross%3E1539475701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656048225&rft_id=info:pmid/24950329&rfr_iscdi=true |